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Abstract

Algebraic geometers usually switch effortlessly between the no-
tion of a vector bundle and a locally free sheaf. I will define both
terms, assuming a good knowledge of [Har, Chapter II] and explain
why they are virtually the same. This is essentially [Har, Exercise
II.5.18], but my Definition 1.1 of a vector bundle might be easier to
recognize by someone with less background in algebraic geometry.
Also, the correspondence established does not mention the sheaf of
sections but uses the natural scheme structure of GLn to establish
the correspondence instead.

1 Setting up shop

All schemes will be over a commutative ring k. You may very well think
of k as a field. Throughout, let X be such a scheme. Fiber products will
be with respect to Spec(k). We define An := An

k = Spec(k[X1, . . . , Xn])

and An
X := X ×An

k. We denote by prX : An
X → X the projection to X

and prA the projection to An. While both notations are slightly abusive,
it should always be very clear from the context what is ment.

Let n ∈ N be a natural number and G := GLn(k) the group of invert-
ible matrices over k, interpreted as a group scheme. It comes with the
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action morphism α : An
G → An, the multiplication (composition) mor-

phism µ : G× G → G and the inversion morphism ι : G → G.

Definition 1.1 (Vector Bundle). A scheme E with a structural morphism
h : E → X is called a vector bundle of dimension n if there exists an
open covering X =

⋃
U∈U U such that

(1) For each U ∈ U , there exists an isomorphism rU : h−1(U)→ An
U with

prU ◦ rU = h|h−1(U). In diagram form,

An
U

prU

''

h−1(U)
	

	

oorUoooo

��

// // E

h
��

U // // X

(1.1)

(2) For U, V ∈ U , the map rUV : An
U∩V → An

V∩U, defined by1

An
U∩V

rUV

��

U ∩V	

rU
uu

rV

ii

An
U∩V

(1.2)

is linear on the fibers. This means that there is a morphism of schemes
γUV : U ∩V → G making the following diagram commutative2:

(U ∩V)×An γUV×id //

prU∩V

((

rUV
((

G×An

α

��

(U ∩V)×An

��

// An

��

×

U ∩V // Spec(k).

(1.3)

1In other words, rUV := rU ◦ r−1
V .

2Intuitively, rUV(P, a) = (P, γUV(P).a) for P ∈ U ∩V and a ∈ An.
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Fact 1.2. For U, V, W ∈ U , we have rWU = rWV ◦ rVU on U ∩V ∩W.

Proof. rWV ◦ rVU = rW ◦ r−1
V ◦ rV ◦ r−1

U = rW ◦ r−1
U = rWU.

Definition 1.3. Let E be a sheaf of OX-modules. Then, E is said to be
locally free of rank n if for each P ∈ X, the stalk EP is a free OX,P-module
of rank n. �

2 Automorphisms of free OX-modules

In this section, we will establish a one-to-one correspondence

AutOX (On
X)
∼= Sch(X, G).

between the automorphisms of On
X (the free OX-module of rank n) and

the morphisms X → G of schemes.

Lemma 2.1. Let X be a scheme. Then, OX(X) is in bijection with the mor-
phisms X → A1 of schemes.

Proof. Let A = k[T] be the univariate polynomial ring over k. Note that
Spec(A) = A1. By [Har, Exercise II.2.4], the morphisms X → Spec(A)

are in bijection with the ring homomorphisms A → OX(X). Hence, the
morphisms X → A1 over k are in bijection with the k-algebra homomor-
phisms k[T] → OX(X), but these are in bijection with OX(X) itself, by
the universal property of the polynomial ring.

First, any morphism γ : X → G of schemes yields an isomorphism

φγ : On
X

∼−→ On
X (2.1)

which is given on any open U ⊆ X by the rule

OX(U)n ∼−→ OX(U)n

f 7−→ α ◦(γ|U × f ).
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Here, we use Lemma 2.1 to identify f ∈ OX(U)n with a morphism of
schemes U → An, denoted also by the symbol f , and γ|U × f is the
unique morphism that makes the following diagram commute:

U

γ|U

$$

f

%%

γ|U× f

##

G×An

prG

��

prA
// An

��

G // Spec(k).

×

The fact that φγ is an isomorphism follows because an inverse is given
by φι ◦ γ. Indeed, denoting by 1 : X → G the constant function that maps
closed points to the neutral element 1 ∈ G,

φι ◦ γ(φγ( f )) = α ◦((ι ◦ γ)× α ◦(γ× f ))

= α ◦(µ ◦(ι ◦ γ× γ)× f ) = α ◦(µ ◦(ι× id) ◦ γ× f )

= α ◦(1 ◦ γ× f ) = α ◦(1× f ) = f .

On the other hand, we claim that any isomorphism φ : On
X→∼ On

X is of
this form: For every open affine subset U = Spec(A) of X, we get an
automorphism φU ∈ AutA(An). Thus, φU can be represented by a matrix
γU ∈ GLn(A), which is essentially a matrix of morphisms U → A1. We
can instead understand it as a matrix-valued morphism γU : U → G.
Glueing the γU yields a γ : X → G which satisfies φγ = φ.

3 The correspondence

Given a vector bundle h : E → X with notation as in Definition 1.1, we
have isomorphisms (see (2.1))

φUV = φγUV : On
U|U∩V

∼−→ On
V |V∩U
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It is clear that φUV = φ−1
VU and Fact 1.2 yields the second condition for

glueing the sheaves On
U along the φUV . See [Har, Exercise 1.22]. We call

the resulting sheaf E . It is clear that E is locally free of rank n.
Given a locally free sheaf E on X, we choose an open, affine covering

U of X such that for all U ∈ U , we have isomorphisms φU : E|U→∼ On
U.

For U, V ∈ U , we define φUV := φU|U∩V ◦ φV |−1
V∩U mapping

φUV : On
V |V∩U

∼−→ On
U|U∩V .

By section 2, we know that there exist regular morphisms γUV : X → G
with φUV( f ) = α ◦(γUV × f ). From γUV we get rUV : An

V∩U→∼ An
U∩V ,

simply defined via (1.3). These morphisms can be used to glue the schemes
An

U to a scheme E. Simultaneously, we glue the An
U → U ↪→ X to a struc-

tural morphism h : E → X. The glueing procedure3 yields morphisms
tU : An

U → E which are isomorphisms onto an open subset of E with
tV = tU ◦ rUV on U ∩V. All the while, the glued morphism h satisfies

An
U

prU

��
��

// tU // E

h
��
��

U // // X.

	

Hence, im(tU) = h−1(U). We denote by rU : h−1(U) → An
U the inverse

of tU and hence, rU = rUV ◦ rV as required for (1.1) and (1.2).
It should be quite clear that these two operations are inverse to each

other from the results of section 2.
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