Quantum Algorithms

Topics in Complexity-Theory

Jesko Hüttenhain Lars Wallenborn

May 6th, 2011

Contents

1 The Quantum Fourier Transform 2
1.1 Circuit Implementation 2
1.2 Quantum Integer Factoring 5
1.3 The Hidden Subgroup Problem 8

Abstract

This handout was created in the context of a talk we gave at the "Graduate Seminar on Topics in Quantum Computation" by Prof. Nitin Saxena at the University of Bonn in the Summer Semester 2011. It is heavily based on the lecture notes $[A A R]$ and the book [NC].

1 The Quantum Fourier Transform

Definition 1.1. We denote by $\omega_{N}:=\exp \left(\frac{2 \pi \hat{\imath}}{N}\right) \in \mathbb{C}$ the canonical primitive N-th root of unity in the complex plane.

Fact/Definition 1.2. Let $N=2^{n}$ be a power of two. We define the gate QFT_{n} on n q-bits to be the unitary $N \times N$ - matrix

$$
\operatorname{QFT}_{n}:=\left(\frac{\omega_{N}^{j k}}{\sqrt{N}}\right)_{0 \leq j, k<N}=\frac{1}{\sqrt{N}} \cdot\left(\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
1 & \omega_{N}^{1} & \omega_{N}^{2} & \cdots & \omega_{N}^{(N-1) \cdot 1} \\
1 & \omega_{N}^{2} & \omega_{N}^{4} & \cdots & \omega_{N}^{(N-1) \cdot 2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \omega_{N}^{N-1} & \omega_{N}^{2(N-1)} & \cdots & \omega_{N}^{(N-1)^{2}}
\end{array}\right)
$$

Proof. To show that QFT_{n} is unitary, we only need to verify that its columns are orthonormal. To do so, we will show that

$$
\sum_{k=0}^{N-1} \omega_{N}^{k j} \omega_{N}^{-h k}=\left\{\begin{align*}
N & ; \tag{1.1}\\
0 & ;
\end{align*} \quad\right. \text { otherwise }
$$

It is noteworthy that $\overline{\omega_{N}^{x}}=\omega_{N}^{-x}$, so the above is actually the scalar product in \mathbb{C}^{N}. Now, ω_{N}^{j-h} is a root of the polynomial $F(X):=X^{N}-1$. We know that $F(1)=0$ and set $G:=F /(X-1)=\sum_{k=0}^{N-1} X^{k}$.

Hence, we are either in the trivial case $j=h \Leftrightarrow \omega_{N}^{j-h}=1$ or, otherwise, $G\left(\omega_{N}^{j-h}\right)=0$ and this is precisely (1.1).

1.1 Circuit Implementation

Notation 1.3. We will associate the states $|x\rangle=\left|x_{1}, \ldots x_{n}\right\rangle$, where the $x_{i} \in\{0,1\}$ are the binary digits in the representation $x=\sum_{j=1}^{n} x_{j} 2^{n-j}$. Furthermore, we use the notation $\left[0 . x_{1} \ldots x_{n}\right]$ to denote the binary fraction $\sum_{j=1}^{n} x_{j} 2^{-j}$. For ease of notation, let

$$
\lambda_{j}(x):=\exp \left(2 \pi \hat{\imath} \cdot\left[0 . x_{j} \cdots x_{n}\right]\right)
$$

Proposition 1.4. The map

$$
|x\rangle \longmapsto \frac{1}{\sqrt{N}} \cdot \bigotimes_{j=0}^{n-1}\left(|0\rangle+\lambda_{n-j}(x)|1\rangle\right)
$$

is the quantum fourier transform.

Proof. We calculate

$$
\begin{aligned}
\sqrt{N} \cdot\left|x_{1}, \ldots, x_{n}\right\rangle & \mapsto \sum_{k=0}^{N-1} \exp \left(\frac{2 \pi \hat{\imath} x k}{N}\right)|k\rangle \\
& =\sum_{k_{1} \in\{0,1\}} \cdots \sum_{k_{n} \in\{0,1\}} \exp \left(2 \pi \hat{\imath} x \frac{\sum_{j=1}^{n} k_{j} 2^{n-j}}{2^{n}}\right)\left|k_{1}, \ldots, k_{n}\right\rangle \\
& =\sum_{k_{1} \in\{0,1\}} \cdots \sum_{k_{n} \in\{0,1\}} \exp \left(2 \pi \hat{\imath} x \sum_{j=1}^{n} k_{j} 2^{-j}\right)\left|k_{1}, \ldots, k_{n}\right\rangle \\
& =\sum_{k_{1} \in\{0,1\}} \cdots \sum_{k_{n} \in\{0,1\}} \bigotimes_{j=1}^{n} \exp \left(2 \pi \hat{\imath} x k_{j} 2^{-j}\right)\left|k_{j}\right\rangle \\
& =\bigotimes_{j=1}^{n}\left[\sum_{k_{j} \in\{0,1\}} \exp \left(2 \pi \hat{\imath} x k_{j} 2^{-j}\right)\left|k_{j}\right\rangle\right] \\
& =\bigotimes_{j=1}^{n}\left[|0\rangle+\exp \left(2 \pi \hat{\imath} x 2^{-j}\right)|1\rangle\right] \\
& =\bigotimes_{j=0}^{n-1}\left[|0\rangle+\exp \left(\pi \hat{\imath} \cdot \frac{x}{2^{j}}\right)|1\rangle\right] \\
& =\bigotimes_{j=0}^{n-1}\left(|0\rangle+\exp \left(2 \pi \hat{\imath}\left[0 . x_{n-j} \cdots x_{n}\right]\right)|1\rangle\right)
\end{aligned}
$$

Definition 1.5. We denote the k-rotation gate by

$$
R_{k}=\left(\begin{array}{cc}
1 & 0 \\
0 & \exp \left(\frac{2 \pi \hat{\imath}}{2^{k}}\right)
\end{array}\right) .
$$

Notation 1.6. For any unitary matrix $A \in \mathbb{C}^{2 \times 2}$, we will use the diagram notation

to denote the controlled A-gate, which corresponds to the unitary matrix

$$
\left(\begin{array}{ll}
I & \mathbf{0} \\
\mathbf{0} & A
\end{array}\right)
$$

where $I \in \mathbb{C}^{2 \times 2}$ is the unit matrix.

Theorem 1.7. The circuit in Figure 1 computes the quantum fourier transform, up to reordering of the quantum bits.

Figure 1: The Quantum Fourier Circuit Implementation

Proof. Let $\left|x_{1} \ldots x_{n}\right\rangle$ be the input of the circuit. Applying Hadamard to the first bit yields the state

$$
\frac{1}{\sqrt{2}}\left(|0\rangle+\exp \left(2 \pi \hat{\imath} \cdot\left[0 . x_{1}\right]\right)|1\rangle\right)\left|x_{2} \ldots x_{n}\right\rangle
$$

since $\exp \left(2 \pi \hat{\imath} \cdot\left[0 . x_{1}\right]\right)=(-1)^{x_{1}}$. Applying the controlled R_{2}-gate turns this into

$$
\frac{1}{\sqrt{2}}\left(|0\rangle+\exp \left(2 \pi \hat{\imath} \cdot\left[0 . x_{1} x_{2}\right]\right)|1\rangle\right)\left|x_{2} \ldots x_{n}\right\rangle
$$

and consequently, the controlled gates $R_{3}, R_{4}, \ldots, R_{n-1}$ and R_{n} leave us with

$$
\frac{1}{\sqrt{2}}\left(|0\rangle+\lambda_{1}(x)|1\rangle\right)\left|x_{2} \ldots x_{n}\right\rangle
$$

We perform an equivalent method on the second qubit: After the Hadamard gate, the state is equal to

$$
\frac{1}{\sqrt{2}^{2}}\left(|0\rangle+\lambda_{1}(x)|1\rangle\right)\left(|0\rangle+\exp \left(2 \pi \hat{\imath} \cdot\left[0 . x_{2}\right]\right)|1\rangle\right)\left|x_{3} \ldots x_{n}\right\rangle .
$$

Then the controlled gates R_{2} to R_{n-1} yield the state

$$
\frac{1}{\sqrt{2}^{2}}\left(|0\rangle+\lambda_{1}(x)|1\rangle\right)\left(|0\rangle+\lambda_{2}(x)|1\rangle\right)\left|x_{3} \ldots x_{n}\right\rangle .
$$

This procedure for every qubit produces the final state

$$
\frac{1}{\sqrt{2}^{n}}\left(|0\rangle+\lambda_{1}(x)|1\rangle\right)\left(|0\rangle+\lambda_{2}(x)|1\rangle\right) \cdots\left(|0\rangle+\lambda_{n}(x)|1\rangle\right) .
$$

By 1.4, this is the quantum fourier transform with all qubits in reverse order.

Corollary 1.8. The quantum fourier transform can be implemented by using only polynomially many circuits.

Proof. In Figure 1 we apply exactly one Hadamard and $n-i-1$ conditional rotation gates to the i-th qubit. So the total number of gates is

$$
\sum_{i=1}^{n}(1+(n-i-1))=\frac{n(n+1)}{2}
$$

Fact 1.9. To swap two qubits, one may apply the quantum circuit

Proof. We compute the composition of the three CNOT gates:

$$
\begin{aligned}
|a b\rangle & \longmapsto|a\rangle \otimes|a \oplus b\rangle \\
& \longmapsto|a \oplus(a \oplus b)\rangle \otimes|a \oplus b\rangle=|b\rangle \otimes|a \oplus b\rangle \\
& \longmapsto|b\rangle \otimes|(a \oplus b) \oplus b\rangle=|b a\rangle .
\end{aligned}
$$

1.2 Quantum Integer Factoring

We now plan to solve the following well-known problem efficiently on a quantum computer. Note that there is no classical algorithm known that factors large integers in polynomial time.

Integer Factoring Problem

Instance: An integer number $N \in \mathbb{Z}$.
Task: \quad Find a nontrivial factor of N.

Definition 1.10. For any positive integer number $N \in \mathbb{Z}_{+}$, we define the residue class $\boldsymbol{r i n g} \mathbb{Z}_{N}:=\mathbb{Z} /(N)$. Its multiplicative subgroup \mathbb{Z}_{N}^{\times}can be written as

$$
\mathbb{Z}_{N}^{\times}=\{k \leq N \mid \operatorname{gcd}(k, N)=1\} .
$$

The Euler phi function is defined as $\phi(N):=\# \mathbb{Z}_{N}^{\times}$. We write ord (x) for the order of $x \in \mathbb{Z}_{N}^{\times}$, i.e. the smallest positive integer number such that $x^{\operatorname{ord}(x)}=1$. For $k \in \mathbb{Z}$, we define

$$
\operatorname{ord}_{N}(k):= \begin{cases}\operatorname{ord}(k \bmod N) & ; \operatorname{gcd}(k, N)=1 \\ 0 & ; \quad \text { otherwise }\end{cases}
$$

Note that when N is a prime, $\mathbb{Z}_{N}=: \mathbb{F}_{N}$ is a field and $\mathbb{F}_{N}^{\times}=\mathbb{F}_{N} \backslash\{0\}$.

Fact 1.11. For any odd prime p,

$$
\operatorname{Pr}_{x \in_{R} \mathbb{F}_{p}^{\times}}\left(\operatorname{ord}_{p}(x) \in 2 \mathbb{Z}\right) \geq \frac{1}{2}
$$

Proof. It is well-known that \mathbb{F}_{p}^{\times}is a cyclic group of order $p-1$. Hence, $x^{p-1}=1$ for all $x \in \mathbb{F}_{p}^{\times}$. Let now g be a generator. This means that for every $x \in \mathbb{F}_{p}^{\times}$, there exists some $k \in \mathbb{N}$ such that $x=g^{k}$. For $x \in_{R} \mathbb{F}_{p}^{\times}$, the probability of k being odd is precisely one half. We therefore assume that k is odd and prove that x has even order. Write

$$
1=x^{\operatorname{ord}(x)}=g^{k \cdot \operatorname{ord}(x)}
$$

so we know that $p-1 \mid k \cdot \operatorname{ord}(x)$. Since k is odd and $p-1$ is even, we are done.
Fact 1.12. Let $N=p q$ for two odd primes p and q. Then,

$$
\operatorname{Pr}_{x \in_{R} \mathbb{Z}_{N}^{\times}}\left(\operatorname{ord}(x) \in 2 \mathbb{Z} \text { and } x^{\frac{\operatorname{ord}(x)}{2}} \neq \pm 1\right) \geq \frac{3}{8}
$$

Proof. We will make use of the isomorphism $\mathbb{Z}_{N}^{\times} \cong \mathbb{Z}_{p}^{\times} \times \mathbb{Z}_{q}^{\times}$, which is essentially the Chinese remainder theorem. Choosing an element $x=(a, b)$ at random means independently choosing an element $a \in_{R} \mathbb{Z}_{p}^{\times}$and an element $b \in_{R} \mathbb{Z}_{q}^{\times}$. Obviously

$$
\operatorname{ord}(x)=\operatorname{lcm}(\operatorname{ord}(a), \operatorname{ord}(b))
$$

so by 1.11 , the probability for x to be of even order is greater or equal than $\frac{3}{4}$.
Let us therefore assume that $x=y^{2}$ is of even order. We have to show that the probability of $y \neq \pm 1$ is at least $\frac{1}{2}$. Now, the equation $y^{2}=1$ has precisely two solutions (namely, 1 and -1) in both \mathbb{F}_{p} and \mathbb{F}_{q}. Hence, it has the four solutions

$$
\begin{equation*}
(-1,-1) \quad(-1,1) \quad(1,-1) \tag{1,1}
\end{equation*}
$$

in $\mathbb{Z}_{N} \cong \mathbb{F}_{p} \times \mathbb{F}_{q}$, the latter two of which are not 1 or -1 .
Corollary 1.13. Let $N=p q$ for two odd prime numbers p and q. With probability at least $\frac{3}{8}$, an element $x \in_{R} \mathbb{Z}_{N}^{\times}$has even order $\operatorname{ord}(x)=2 r$ and both $\operatorname{gcd}\left(N, x^{r}+1\right)$ and $\operatorname{gcd}\left(N, x^{r}-1\right)$ are nontrivial factors of N.

Proof. Choosing an element $x \in_{R} \mathbb{Z}_{N}^{\times}$such that ord $(x)=2 r$ and $x^{r} \neq \pm 1$ gives us the equality

$$
0=x^{2 r}-1=\left(x^{r}-1\right) \cdot\left(x^{r}+1\right)
$$

and since neither $\left(x^{r}-1\right)$ nor $\left(x^{r}+1\right)$ are equal to zero in \mathbb{Z}_{N}, this means that they represent nontrivial factors of N.

Hence, we have reduced the Integer Factoring Problem to the

Period Finding Problem

Instance: A periodic function $f: \mathbb{Z} \rightarrow \Omega$.
Task: \quad Find the period of f. This is the smallest $s \in \mathbb{Z}_{+}$such that $f(x+s)=$ $f(x)$ for all $x \in \mathbb{Z}$.

A quantum algorithm to solve this problem probabilistically is given below:
Algorithm 1 Period-Finding-Quantum-Subroutine
Input: 2 registers of n-qubits in state $|0\rangle|0\rangle$ and a black-box B_{f} that computes a func-
tion $f: \mathbb{Z}_{2^{n}} \rightarrow \mathbb{Z}_{2^{n}}$ with period s.
Output: A quantum state $|k\rangle|f(r)\rangle$
1: let $N:=2^{n}$ and $L:=\left\lfloor\frac{N}{s}\right\rfloor$ where $s=\operatorname{ord}_{M}(x)$.
2: Apply Hadamard to register 1:

$$
\frac{1}{\sqrt{N}} \cdot \sum_{j=0}^{N-1}|j\rangle|0\rangle
$$

3: Apply B_{f} :

$$
\frac{1}{\sqrt{N}} \cdot \sum_{j=0}^{N-1}|j\rangle|f(j)\rangle
$$

4: Measure register 2. For the minimal r :

$$
\frac{1}{\sqrt{L}} \cdot \sum_{j=0}^{L-1}|r+j s\rangle|f(r)\rangle
$$

5: Apply QFT_{n} to register 1:

$$
\frac{1}{\sqrt{N L}} \cdot \sum_{j=0}^{L-1} \sum_{k=0}^{N-1} \omega_{N}^{(r+j s) k}|k\rangle|f(r)\rangle
$$

6: return $|k\rangle|f(r)\rangle$ by measuring register 1.
We make use of the following statement, which involves several tedious calculations:
Fact 1.14. Let $M \in \mathbb{Z}$ be any number and n minimal such that $2^{n} \geq M^{2}$. Choose any $x \in \mathbb{Z}_{M}^{\times}$and let $|k\rangle\left|x^{r} \bmod M\right\rangle$ be the quantum state returned by a call to the Period-Finding-Quantum-Subroutine with black-box $f(r):=x^{r} \bmod M$. Then, with high probability, $\omega_{N}^{k s} \approx 1$ where $s=\operatorname{ord}(x)$ is the period of f.

Handwaving. Note that the quantum state $|k\rangle|f(r)\rangle$ occurs with probability

$$
\left|\sum_{j=0}^{L-1} \omega_{N}^{(r+j s) k}\right|^{2}=\left|\omega_{N}^{r k}\right|^{2} \cdot\left|\sum_{j=0}^{L-1} \omega_{N}^{j s k}\right|^{2}
$$

We claim that $\left|\sum_{j} \omega_{N}^{j s k}\right|^{2}$ is very large when $\omega_{N}^{s k} \approx 1$ and very small otherwise. This is morally correct because if $\omega_{N}^{s k}$ forms a large angle with the real axis, summing up over its periodic rotations will cancel out the amplitudes. If the angle is very small, on the other hand, they add up.

Corollary 1.15. There exists a polynomial time quantum algorithm to solve the Period Finding Problem.

Proof. Since $\omega_{N}^{k s} \approx 1=\omega_{N}^{N}$, we can estimate a multiple of the period s by N / k. Sampling a couple of more times and taking the greates common divisor of the multiples obtained will reveal the value of s.

1.3 The Hidden Subgroup Problem

Definition 1.16. Let G be a group and $f: G \rightarrow \Omega$ any map of sets. We say that f conceals H if $H \subset G$ is a subgroup of G and $f(x)=f(y)$ if and only if there exists a $h \in H$ with $x=h y$. In other words, f is constant on any left-coset of H.

Hidden Subgroup Problem $\left(\mathrm{HSP}_{G}\right)$

Parameters: A group G.
Instance: A map $f: G \rightarrow \Omega$ concealing $H \subset G$.
Task: \quad Find a set of generators of H.

Example 1.17. Note that the Period Finding Problem is a special case of the Hidden Subgroup Problem over $G=\mathbb{Z}$. Take $H=(s)$, the subgroup generated by the period of some function $f: \mathbb{Z} \rightarrow \Omega$. Then, f conceals precisely H and finding a set of generators of H is equivalent to finding s. Consequently, Integer Factoring reduces to Hidden Subgroup.

In fact, the following result is known:
Theorem 1.18 (Shor,Kitaev). For a finite abelian group $G, \operatorname{HSP}_{G} \in \operatorname{BQP}$.
Remark 1.19. For noncommutative groups G, it is still an open problem whether HSP_{G} is in BQP or not.

We end with the reduction of another well-known computational problem to HSP:

Graph Isomorphism Problem (GI)

Instance: Two undirected graphs G_{1} and G_{2}.
Task: \quad Decide whether $G_{1} \cong G_{2}$.

Definition 1.20. Recall that the automorphisms of a graph $G=(V, E)$ are given by all permutations of its vertices that induce a permutation of its edges, i.e.

$$
\operatorname{Aut}(G)=\{\pi: V \rightarrow V \mid \forall\{v, w\} \in E:\{\pi(v), \pi(w)\} \in E\} .
$$

Furthermore, we denote by $\mathcal{G}_{n}:=\{G \mid \# V(G)=n\}$ the set of all graphs on n vertices.
Theorem 1.21. GI $\leq_{T} \operatorname{HSP}_{S_{n}}$.
Proof. We may assume without loss of generality that the instance $\left(G_{1}, G_{2}\right)$ of GI is such that the G_{i} are both connected graphs. We set $G:=G_{1} \cup G_{2}$ and consider Aut (G) as a subgroup of S_{n}, where $n=\# V(G)$. For any $\pi \in S_{n}$ and $H \in \mathcal{G}_{n}$, we define

$$
\pi(H):=(V(H),\{\{\pi(v), \pi(w)\} \mid\{v, w\} \in E(H)\}) .
$$

Note that $\pi(H)=H$ if and only if $\pi \in \operatorname{Aut}(H)$, but always $\pi(H) \cong H$. This is one of the rare cases where this subtle distinction needs to be sought through with great care.

Now, we define $f: S_{n} \rightarrow \mathcal{G}_{n}$ by $f(\pi):=\pi(G)$ and claim that f conceals $\operatorname{Aut}(G)$. Once we have shown this, we are done since $G_{1} \not \neq G_{2}$ if and only if each generator of $\operatorname{Aut}(G)$ operates independently on each of the G_{i}.

Hence, let $\pi, \sigma \in S_{n}$ and $\rho \in \operatorname{Aut}(G) \subseteq S_{n}$. Then, $\pi=\sigma \rho$ if and only if

$$
f(\pi)=\pi(G) \stackrel{!}{=} \sigma(\rho(G))=\sigma(G)=f(\sigma) .
$$

References

[AAR] Scott Aaronson, Lecture notes "Quantum Compexity Theory", Electronic Version 1 from 05/06/2011.
[NC] Michael A. Nielsen, Isaac L. Chuang, "Quantum Computation and Quantum Information", Cambridge University Press, 2000

[^0]
[^0]: ${ }^{1}$ http://stellar.mit.edu/S/course/6/fa08/6.896/materials.html

