
Topics in Post-Quantum Cryptography
Lattice-Based Methods

Jesko Hüttenhain Lars Wallenborn

January 18th, 2011

Contents

1 Basic Definitions 2
1.1 General Lattices . 2
1.2 q-ary Lattices . 3
1.3 Lattice Problems . 5

2 Finding Short Vectors 7
2.1 A Length Estimate . 8
2.2 Lattice Reduction Methods . 8
2.3 Combinatorial Methods . 9

3 Encryption Schemes 10
3.1 GGH/HNF . 10
3.2 NTRU . 11
3.3 LWE-Based . 17

Algorithms

1 Base-Reduction-Algorithm . 4
2 Combinatorial SVPγ-Solver . 9
3 GGH/HNF-Key-Generation . 10
4 GGH/HNF-Encryption . 11
5 GGH/HNF-Decryption . 11
6 NTRU-Key-Generation . 13
7 NTRU-Encryption . 15
8 Matrix-Reduction . 15
9 NTRU-Decryption . 16
10 LWE-Key-Generation . 18
11 LWE-Encryption . 18
12 LWE-Decryption . 19

1

Acknowledgements

This short summary of lattice-based encryption methods is based on the book chapter
[MR09]. It was presented in the seminar on modern cryptographic methods at the Math-
ematical Institute of the University Bonn from January 18th to January 28th in 2011.
The authors would like to express their heartfelt thanks to Professor Nitin Saxena for
organizing the seminar and being available for helpful advice, even on national holidays.

1 Basic Definitions

1.1 General Lattices

Definition 1.1. Let n ∈ N. A lattice of dimension n is a set of the form

L = L(B) := {Bx | x ∈ Zn } ⊆ Rn

for some invertible matrix B ∈ Gln(R). We then write dim(L) = n. In this case,
B is also called the lattice basis of L. If b1, . . . , bn are the columns of B, we write
‖B‖ := maxi ‖bi‖.

Proposition 1.2. Let B,C ∈ Gln(R). Then, L(B) = L(C) if and only if there exists a
matrix U ∈ Gln(Z) such that C = BU .

Proof. For “⇒”, we let c1, . . . , cn denote the columns of C. By assumption, ci = Bui
for certain ui ∈ Zn. Let U denote the matrix whose columns are the ui, then C = BU
is immediate. Since U = CB−1, it has to be invertible over R. We let v1, . . . , vn be the
columns of V := U−1 ∈ Gln(R). Since B = CV , it follows that the Cvi are the columns
of B, hence Cvi ∈ L(C). This means that vi ∈ Zn and therefore V,U ∈ Gln(Z).

For “⇐”, simply note that Ux ∈ Zn ⇔ x ∈ Zn and Cx = BUx.

Corollary/Definition 1.3. If L = L(B) is a lattice, we define

(i). the determinant det(L) := | det(B)|.

(ii). the dual L∗ := L
(
B−T

)
.

By the above proposition, this does not depend on the choice of B. �

Fact 1.4. Let L = L(B) be a lattice, then det(L∗) = 1/det(L) . �

Fact 1.5. Let L = L(B) ⊆ Rn be a lattice. Then,

L∗ = { y ∈ Rn | ∀x ∈ L : 〈x, y〉 ∈ Z } .

2

http://www.math.uni-bonn.de/
http://www.math.uni-bonn.de/

Proof. First, let us assume that 〈x, y〉 ∈ Z for all x ∈ L, so 〈Bx′, y〉 ∈ Z for all x′ ∈ Rn.
This means

〈
x′, BT y

〉
∈ Z for all x′ ∈ Rn. Choosing x′ as the i-th standard vector implies

that the i-th component of BT y is an integer number. In other words, y′ := BT y ∈ Zn.
Thus, B−T y′ = y as claimed.

Now, let us assume that y = B−T y′ for some y′ ∈ Zn. Then, for any x ∈ L we can
write x = Bx′ with x′ ∈ Zn, and thus,

〈x, y〉 =
〈
x, B−T y′

〉
=
〈
B−1x, y′

〉
=
〈
x′, y′

〉
∈ Z.

1.2 q-ary Lattices

Definition 1.6. Let q ∈ Z+. A lattice L of dimension n is said to be q-ary if qZn ⊆ L.

Fact 1.7. Let L = L(B) be an integer lattice, i.e. B ∈ Zn×n, and assume that q ∈ Z+

is an integer multiple of det(L). Then, L is a q-ary lattice.

Proof. Let x ∈ Zn be an integer vector. Let B# ∈ Zn×n be the adjoint of B, so we have
B−1 = det(B)−1B# by the Cramer rule1. Thus,

y := B−1 · qx =
q

det(B)
B]x ∈ Zn

and therefore, qx = By ∈ L(B).

Corollary 1.8. Every rational lattice is q-ary for some q ∈ N.

Proof. Let L = L(B) for B ∈ Qn×n. We can write p · B = B′ with B′ ∈ Zn×n and
p ∈ N. Let q := |det(B′)|, then L(B′) is (pq)-ary by the above result. Consequently,
L(B) = p−1L(B′) is a q-ary lattice.

Lemma 1.9. Let v ∈ Zn and B = (b1 · · · bn) a lattice basis. The sets

Zv :=
{∑n

i=1
αibi

∣∣∣ αi ∈ R with vi ≤ αi < vi + 1
}

(1.1)

satisfy vol(Zv) = det(B) and Rn =
⋃̇
vZv.

Proof. Note that vol(Zv) = vol(Z0) for all v and B · [0, 1]n = Z0. It is a standard result
of multivariate calculus2 that

det(B) = det(B) · vol([0, 1]n) = vol(Z0).

Remark 1.10. The above 1.9 can be phrased as saying that the inverse of the determinant
of a lattice is equal to its density.

1See also [Lor03, Chapter 4, Satz 4, Page 148]
2See, for instance, [Koe04, Chapter 9].

3

Definition 1.11. Let n ≤ m and A ∈ Zn×m with rank(A) = n. If A = (aij), we write
maxA := maxij aij. For q ∈ Z+, we define

Λq(A) :=
{
y ∈ Zm

∣∣ ∃s ∈ Zn : y ≡ AT s (mod q)
}

Λ⊥q (A) := { y ∈ Zm | Ay ≡ 0 (mod q) }

To give terms like det (Λq(A)) a meaning, we want to assign a square matrix B to the
matrix A. For this we will use the following algorithm:

Algorithm 1 Base-Reduction-Algorithm

Input: A ∈ Zn×m for n ≤ m with rank (A) = n
Output: B ∈ Zn×n with B · Zn = A · Zm and rank (B) = n.

/* We denote the i-th column of A by ai and its j-th entry by aij */

1: for j = 1 to n do
2: set g := gcd (ajj , . . . , amj)
3: choose gj , . . . , gm ∈ Z with

∑m
i=1 giaij = g

4: set aj :=
∑m

i=1 giai
5: for k = j + 1 to m do
6: set ak := ak −

akj
g aj

7: end for
8: end for
9: return (a1, . . . , an)

Proposition 1.12. The Base-Reduction-Algorithm works correctly and outputs a
lower triangular matrix.

Proof. After step 4 the j-th entry of aj is

ajj =
m∑
i=1

giaij = g

and therefore, after step 6, the j-th entry of ak is

akj = akj −
akj
g
ajj = 0

Since in the j-th iteration of the outer loop, we only change columns ai of A with i ≥ j
the output is of the desired form. We only replaced columns of A by integral linear
combinations of other columns of A so during the whole algorithm A remains integral
and L (A) never changes.

Proposition 1.13. We claim that Λq(A) is a q-ary lattice L of dimension m. Further-
more, Λ⊥q (A) = q · L∗.

4

Proof. We first note that

Λq(A) =

(
A
qIm

)T
· Zm+n

Thus, the output of the Base-Reduction-Algorithm is a matrix B ∈ Zm×m of full
rank such that Λq(A) = B · Zm = L(B) =: L. This is a q-ary lattice by definition of
Λq(A). We are left to show that Λ⊥q (A) = qL(B)∗. To see this, we will make use of 1.5.

First, let ỹ ∈ qL∗ meaning that ỹ = qy for some y ∈ Rm, with the property that
∀x ∈ L : 〈x, y〉 ∈ Z. If both y and Ay were integral, we would be done since Aỹ =
qAy ≡ 0 (mod q). By either choosing x = qei or x = AT ei, we can see that both〈
AT ei, y

〉
= 〈ei, Ay〉 and 〈qei, y〉 = 〈ei, ỹ〉 are integer numbers.

Next, let ỹ ∈ Zm such that Aỹ ≡ 0 (mod q). In other words, there exists a z ∈ Zn
with Aỹ = qz. Define y := q−1ỹ. It’s left to show that 〈x, y〉 ∈ Z for all x ∈ Λq(A). So
let x ∈ Λq(A) and write x = AT s+ qr for some s ∈ Zn and r ∈ Zm. Then,

〈x, y〉 =
〈
AT s+ qr, q−1ỹ

〉
=
〈
AT s, q−1ỹ

〉
+ 〈r, ỹ〉

= q−1 〈s, Aỹ〉+ 〈r, ỹ〉 = 〈s, z〉+ 〈r, ỹ〉 ∈ Z.

Corollary 1.14. If Λq(A) is a lattice, then Λq(A) = q · Λ⊥q (A)∗.

Proof. Let Λq(A) = L(B). Then, the statement directly follows from 1.13:

qΛ⊥q (A)∗ = q
(
qL
(
B−T

))∗
= qL

(
qB−T

)∗
= qL

(
q−1B

)
= L(B) = Λq(A).

1.3 Lattice Problems

Let B ∈ Gln(R) be a lattice basis and γ ≥ 1 be an approximation parameter. The most
well-known approximation problems on this lattice are the following:

Shortest Vector Problem (SVPγ). Find a vector v ∈ L(B) \ {0} such that

‖v‖ ≤ γ · min
w∈L(B)
w 6=0

‖w‖

Closest Vector Problem (CVPγ). For t ∈ Rn, find a lattice point v ∈ L(B) such that

‖v − t‖ ≤ γ · min
w∈L(B)

‖w − t‖

Shortest Independent Vectors Problem (SIVPγ). Find U ∈ Gln(Z) with

‖BU‖ ≤ γ · min
V ∈Gln(Z)

‖BV ‖

5

We then write SVP := SVP1, CVP := CVP1 and SIVP := SIVP1 for the non-
approximative problems.

We now give a brief historical analysis of the hardness of the SVPγ . From the algorithms
known so far, it seems that we can either achieve a polynomial runtime or a polynomial
approximation factor, but not both.

Approximation Runtime Space Reference

1 2O(n) 2O(n) see below

1 2O(n logn) p(n) [Kan83]

p(n) 2O(n) 2O(n)

2O(n) p(n) [LLL82]

This has led to the following conjecture:

Conjecture 1.15. There is no polynomial time algorithm that approximates lattice
problems to within polynomial factors.

As far as exponential-time exact solvers are concerned, they have become practical even
for small instances just in the recent years:

Year Authors Time Space

2001 Ajtai, Kumar, Sivakumar 2O(n) 2O(n)

2004 Regev 216n 28n

2008 Nguyen, Vidick 25.9n 22.95n

2010 Pujol, Stelhé 22.46n 21.233n

One should note, however, that lattice reduction methods such as [LLL82] seem to
perform better in practice than their theoretic worst-case guarantees suggest. This is
not fully explained yet, but has experimental evidence: In [GN08], different algorithms
and several distrubutions on lattices where compared with the result that they provide
an approximation ratio of roughly δn where δ is close to 1.012. Moreover, it seems
that approximation rations of (1.01)n are outside the reach of known lattic reduction
alogrithms.

We should note that for γ >
√
n/log(n) , the SVPγ is not NP-hard unless the polynomial

time hierarchy collapses. For γ = 1 however, it is – see [Ajt98]. Furthermore, there are
no quantum algorithms known that perform better than the classical ones. Because
of this, lattice-based cryptography is often labelled “post-quantum” cryptography. In
summary, we may very well assume that the SVP is a hard problem.

For certain cryptosystems based on lattices, we will be able to prove that breaking the
cryptographic construction would imply an efficient algorithm for solving any instance
of some underlying lattice problem. Because of the above facts, this provides a very
strong security guarantee, as opposed to other cryptographic schemes.

6

2 Finding Short Vectors

Definition 2.1. Let L be a lattice. We denote by λ1(L) := minv∈L ‖v‖ the length of a
shortest vector in L.

Definition 2.2. Let Zq := Z/(q) . We denote by πq : Z → Zq the canonical projection.
For matrices A = (aij) ∈ Zn×m, we write πq(A) for the matrix (πq(aij)) ∈ Zn×mq .

Fact 2.3. If Λq(A) is a lattice such that πq(A) has full rank. Then,

det(Λ⊥q (A)) = qn, det(Λq(A)) = qm−n.

Proof. We note that # ker(πq(A)) = qm−n by assumption. If we denote by Qk := [0, kq[m

the cube of length kq, this means that Vk := Qk ∩ Λ⊥q (A) contains precisely kmqm−n

elements. Recall 1.9. If Λ⊥q (A) = L(B), we set

Zk :=
⋃

Bv∈Vk

Zv.

Intuitively speaking, we cover each lattice point in Qk by one of the parallelepipeds Zv.
Now, we know that Zk can differ by a volume of at most C(qk)m−1 from that of Qk,
where C is some constant. In other words,

vol(Qk)− C(qk)m−1 ≤ vol(Zk) ≤ vol(Qk) + C(qk)m−1

Since vol(Qk) = (qk)m, the quotient vol(Zk)/vol(Qk) tends to 1 as k tends to infinity.
On the other hand, the left side of

det(Λ⊥q (A))

qn
=

det(Λ⊥q (A)) · kmqm−n

kmqm
=

vol(Zk)

vol(Qk)

does not depend on k and must therefore be equal to 1.
We now write Λ⊥q (A) = L(B) and thus,

Λq(A)
1.14
= qtL(B)∗

1.3
= qL

(
B−T

)
= L

(
qIm ·B−T

)
and taking the determinant yields the desired result.

In the following subsections, we assume that n < m and A ∈ Zn×m is an integer
matrix, chosen at random with maxA < q. We aim to solve the SVPγ for Λ⊥q (A). With
high probability, πq(A) has full rank. Even if it does not, we can eliminate redundant
columns in polynomial time and obtain a smaller instance.

7

2.1 A Length Estimate

We have seen that the determinant of a lattice can be understood as the inverse of its
density. Hence, the density of Λ⊥q (A) is q−n. This means that in a ball of volume qn + ε
around 0, we expect to find one nonzero lattice point, namely the shortest such vector.

The volume of the ball3 Br := Br(0) ⊆ Rm with radius r is equal to

vol(Br) =

√
πm · rm

Γ
(
m
2 + 1

) .
Thus, the radius of the ball with volume qn can be calculated as

r =
m

√
qn ·

Γ
(
m
2 + 1

)
√
πm

.

We want to use this radius as an estimate for λ1(Λ⊥q (A)). Note that for even m, we have
Γ
(
m
2 + 1

)
= (m/2)! by [For04, §20, Satz 2, Page 220]. The faculty can be approximated

by
n! ≈

√
2πn (n/e)n ,

see also [For04, §20, Satz 6, Page 225]. Thus, m
√

(m/2)! ≈
√
m/2e where we use that

(πm)1/2m ≈ 1. In conclusion, we estimate the length of a shortest vector as

λ1(Λ⊥q (A)) ≈ q n/m ·
√

m

2πe
.

This estimate has been shown to be very good for values of m that are neither too close
to n nor too large.

2.2 Lattice Reduction Methods

Lattice reduction is the process of calculating a nearly orthogonal lattice basis from an
arbitrary one – neither shall we make the term nearly orthogonal precise here, nor will
we describe the various algorithms. We should however mention to the interested reader
that the LLL-algorithm was the first such algorithm and is probably suited best for
study – see [LLL82].

It has been established empirically that the shortest vector one can find in Λ⊥q (A) is
approximately of length

min
{
q, 2
√

4n log(q) log(δ)
}

(2.1)

where δ depends on the exact lattice reduction algorithm used. Faster algorithms provide
δ ≈ 1.013 whereas more precise algorithms provide δ ≈ 1.012 or even δ ≈ 1.011.

It is noteworthy that m has no impact on the quality of the vector that is found. This
might indicate that n and q alone determine the difficulty of the SVPγ .

3See [Koe04, Chapter 8.4, Page 288].

8

2.3 Combinatorial Methods

The best known combinatorial methods to solve the SVPγ are easily described:

Algorithm 2 Combinatorial SVPγ-Solver

Input: An integer q ∈ Z+, a matrix A ∈ Zn×m with maxA < q, rank(A) = n, and a
length bound b ∈ Z+.

Output: A vector w = (w1, . . . , wm) ∈ Λ⊥q (A) such that |wi| ≤ b for all i.

1: choose k ∈ Z+ such that
∣∣∣ 2k

k+1 −
m log(2b+1)
n log(q)

∣∣∣ is minimal

2: set M :=
⌈
m
/

2k
⌉

3: set Vi := {A•,i . . . A•,i+M } for 1 ≤ i ≤ 2k. Here, A•,i denotes the i-th column of
πq(A) for i ≤ m and the zero vector otherwise

4: set Li :=
{∑M

j=1 bjvj

∣∣∣ vj ∈ Vi and bj ∈ [−b, b] ∩ Z
}

/* Note: We store vectors as formal linear combinations of columns */
/* of A and the Li are multisets, i.e. implemented as lists. */

5: set L := #L1 = (2b+ 1)M

6: for j = k − 1 to 0 do
7: for 1 ≤ i ≤ 2j do

8: set Li :=

{
x+ y

∣∣∣∣ x ∈ Li, y ∈ Li+2j and
∀l ≤ (k − j) logq(L) : (x+ y)l = 0

}
9: end for

10: end for
11: if 0 ∈ L1 then
12: return (w1, . . . , wm) for 0 =

∑m
i=1wiA•,i ∈ L1

13: else
14: return 0
15: end if

Proposition 2.4. The Combinatorial SVPγ-Solver works correctly. With a prob-
ability of at least 1− e−1 ≈ 0.63, the returned vector is nonzero.

Proof. Correctness is obvious, but we have to verify that the returned vector is nonzero
with high probability. First, we claim that after step 8, the size of Li has not increased.
The list {x+ y | x ∈ Li, y ∈ Li+2j } contains L2 many elements. For any integer t < m:

Pr
v∈Znq

[∀1 ≤ i ≤ t : vi = 0] =
qn−t

qn
= q−t.

Performing this experiment for t = logq(L) exactly L2 times yields an expectancy value

of L2 · q− logq(L) = L.
Consequently, in step 11, the list L1 contains L vectors which are zero in all but the

last n− k logq(L) components. The probability that a random vector with this property

9

is the zero vector is precisely 1
/
qn−k logq L . Since in step 1, we chose

n

k + 1
≈ m log(2b+ 1)

2k log(q)
=
M log(2b+ 1)

log(q)
= logq(L),

we know that n ≈ (k + 1) logq(L). The probability that the zero vector is among the
elements of L1 is therefore equal to

1−
(

1− qk logq(L)−n
)L
≈ 1−

(
1− 1

L

)L
= 1−

(
L− 1

L

)L
which tends to 1− e−1 from above, for L→∞.

The running time of the algorithm is mainly dominated by the size of the lists Li,
namely L = (2b+ 1)

m

2k for k chosen as in step 1.

3 Encryption Schemes

3.1 GGH/HNF

This cryptosystem, proposed by Goldreich, Goldwasser and Halevi has already been
broken in practice but is presented here for educational purposes.

Fact/Definition 3.1. Given a matrix A ∈ Gln(R) with integer entries, there exists a
unique U ∈ Gln(Z) such that (hij) = H = AU has the following properties:

(i). For all i, hii > 0.

(ii). For all j > i, hij = 0.

(iii). For all j < i, |hij | < hii.

Then, H is called the hermite normal form of A.

Proof. See [Coh93, Theorem 2.4.3, page 67].

Remark 3.2. The hermite normal form of an invertible integer matrix can be efficiently
computed, see [SL96].

Algorithm 3 GGH/HNF-Key-Generation

Input: A security parameter n ∈ N and a small value b ∈ N.
Output: Two lattice bases B and H with L(H) = L(B).

/* B will be the private and H the public key. */

1: choose nearly orthogonal vectors b1, . . . , bn ∈R Zn with bij < b
2: calculate the Hermite Normal Form H of B
3: return (B,H)

10

Algorithm 4 GGH/HNF-Encryption

Input: A lattice basis H and a message m ∈ Zn.
Output: A ciphertext c ∈ Qn

1: set v := Hm
2: choose r ∈R Qn such that the lattice vector closest to r + v is v
3: return v + r

Definition 3.3. We denote by b−e the babai rounding method; see [Bab86].

Algorithm 5 GGH/HNF-Decryption

Input: A ciphertext c ∈ Qn and a nearly orthogonal lattice basis B.
Output: The decrypted message m ∈ Zn.

1: let H = BU be the hermite normal form of B
2: return U−1 ·

⌊
B−1c

⌉
Proposition 3.4. The GGH/HNF Cryptosystem works correctly.

Proof. We show that GGH/HNF-Decryption calculates the plaintext from a cipher-
text that is the output of a call to GGH/HNF-Encryption. Assume that c = Hm+ r
for some m ∈ Zn and a noise vector r ∈ Qn where H = BU is the hermite normal form
of B. Then, the Babai rounding technique yields

U−1 ·
⌊
B−1c

⌉
= U−1 ·

⌊
B−1Hm+B−1r

⌉
= U−1 ·

⌊
B−1BUm+B−1r

⌉
= U−1 ·

⌊
Um+B−1r

⌉
= U−1Um = m.

Remark 3.5. It is a general understanding that the hermite normal form of a lattice basis
serves as the best public key since it can be computed from any lattice basis efficiently.

3.2 NTRU

We now proceed to present the NTRU cryptosystem, the most practical known lattice-
based cryptosystem.

Definition 3.6. Let v ∈ Rn be a vector and A ∈ Rn×n a matrix. Then, we define
A∗v := (v,Av, . . . , An−1v). Furthermore, we define the matrix

T :=

0 · · · 0 1
. . . 0

I
...

. . . 0

and consequently, T ∗v is the matrix whose i-th column is equal to v rotated by i.

11

Lemma 3.7. For any two vectors f, g ∈ Rn, we have

(i). T ∗f g = T ∗g f .

(ii). T · T ∗f = T ∗f · T .

(iii). T ∗f · T ∗g = T ∗T ∗f g
.

Proof. Consider the matrices

I∗k :=

0 · · · 0 1
... . .

.
0

0 . .
. ...

1 0 · · · 0

 ∈ Glk(R)

and for 1 ≤ k ≤ n− 1, define the symmetric matrices

Si :=

(
I∗i 0
0 I∗n−i

)
∈ Gln(R).

Then, we have

T ∗g f =

g1 gn · · · g2

g2 g1 · · · g3

...
...

...
gn gn−1 · · · g1

 · f =

〈f, S1g〉
...

〈f, Sng〉

 =

〈S1f, g〉
...

〈Snf, g〉

 = T ∗f g =: h

For the second statement, we calculate

〈
Si−1f, T

jg
〉

=
n∑
k=1

(Si−1f)k · (T jg)k =
i−1∑
k=1

fi−k · gk−j +
n∑
k=i

fn+i−k · gk−j

=
i∑

k=2

fi−k−1 · gk−j−1 +
n+1∑
k=i+1

fn+i−k−1 · gk−j−1

=
i∑

k=1

fi−k−1 · gk−j−1 +
n∑

k=i+1

fn+i−k−1 · gk−j−1 =
〈
Sif, T

j+1g
〉
,

where all index operations are considered modulo n. Thus,

T ·

〈
S1f, T

j−1g
〉

...〈
Snf, T

j−1g
〉
 =

〈
Snf, T

j−1g
〉

...〈
Sn−1f, T

j−1g
〉
 =

〈
S1f, T

jg
〉

...〈
Snf, T

jg
〉

and therefore,

T j−1h = (T ∗h)j =

〈
S1f, T

j−1g
〉

...〈
Snf, T

j−1g
〉
 .

12

This yields the desired equality

T ∗f · T ∗g =

f1 fn · · · f2

f2 f1 · · · f3

...
...

...
fn fn−1 · · · f1

 ·

g1 gn · · · g2

g2 g1 · · · g3

...
...

...
gn gn−1 · · · g1

=
(〈
Sif, T

j−1g
〉)
ij

= T ∗h .

Definition 3.8. We say that a q-ary lattice L = Λq(A) is a convolational modular
lattice if A ∈ Zn×2n and

(
Tx
Ty

)
∈ L for all

(
x
y

)
∈ L.

Definition 3.9. Let n, d ∈ N and d < n. A vector f ∈ Zn is called a d-vector if f has
exactly d negative and d+ 1 positive nonzero entries.

Algorithm 6 NTRU-Key-Generation

Input: prime n ∈ N, modulus q ∈ N, p ∈ N with p < q, weight bound d ∈ N.
Output: A private key

(
f
g

)
∈ Z2n and a public key h ∈ Znq .

1: choose two d-vectors f ′, g ∈R { p, 0,−p }n
2: set f := f ′ + e1

3: if πq(T
∗
f) /∈ Gln(Zq) then

4: goto step 1
5: end if
6: set h := (T ∗f)−1g mod q

7: return (
(
f
g

)
, h)

Proposition 3.10. Let (
(
f
g

)
, h) be a key pair generated by NTRU-Key-Generation

and A := (T ∗f T
∗
g). Then,

(i). Λq(A) is the smallest convolutional modular lattice containing
(
f
g

)
.

(ii). We have T ∗f ≡ I (mod p) and T ∗g ≡ 0 (mod p).

(iii). If Λq(A) = L(A′), the hermite normal form of A′ is given by

H =

(
I 0
T ∗h qI

)
.

Proof. Note that all entries of g and f ′ (chosen in step 1) are divisible by p. Thus, the
two congruencies in part (ii) are obvious.

For part (i), note that x ∈ Λq(A) if and only if there exist y ∈ Zn and z ∈ Zm with
x = AT y + qz. Since

AT y =

(
T ∗f
T ∗g

)
y =

n−1∑
i=0

(
T if
T ig

)
· yi (3.1)

13

and (
z1

z2

)
∈ Zm ⇔

(
Tz1

Tz2

)
∈ Zm,

we have verified that Λq(A) is convolutional. Also, if any convolutional modular lattice

contains
(
f
g

)
, it must contain all Z-linear combinations of the form (3.1). For part (iii),

we have to show three things:

• The vector
(
f
g

)
is contained in L(H).

• The lattice L(H) is convolutional.

• The inclusion L(H) ⊆ Λq(A) holds.

First, we are looking for
(
x
y

)
∈ Z2n such that H ·

(
x
y

)
=
(
f
g

)
. Since application of H does

not change x, we must choose x = f . For y := q−1 (g − T ∗hf),

H ·
(
x
y

)
=

(
f

T ∗hf + qIy

)
=

(
f
g

)
.

To see that y is integral, one has to show that g − T ∗hf is an integer multiple of q. By
3.7 and the definition of h,

T ∗hf = T ∗f h = T ∗f · (T ∗f)−1g ≡ g (mod q).

By part (i), we have shown that Λq(A) ⊆ L(H). Next, we show that L(H) is convolu-
tional. Observe that(

x

y

)
∈ L(H)⇔ ∃ỹ ∈ Zn : H ·

(
x

ỹ

)
=

(
x

y

)
⇔ T ∗hx+ qIỹ = y. (3.2)

We now choose

x′ := Tx

y′ := q−1(Ty − T ∗hx′)

and calculate that H ·
(
x′

y′

)
=
(
Tx
Ty

)
. Finally, we calculate

Ty
(3.2)
= T (T ∗hx+ qIỹ) ≡ TT ∗hx

3.7
= T ∗hTx = T ∗hTx = T ∗hx

′ (mod q)

Therefore, y′ is integral.
Finally, the determinant of L(H) is obviously equal to qn, which is the same as

det Λq(A) by 2.3. On the other hand, we already know that L(H) ⊇ Λq(A), and so
L(H) can not contain any further points since both lattices have the same density – see
1.9 and the following remark.

14

Algorithm 7 NTRU-Encryption

Input: prime n ∈ N, modulus q ∈ N, weight bound d ∈ N, public key h ∈ Znq , d-vector
message m ∈ { 1, 0,−1 }n.

Output: ciphertext c ∈ Znq .

1: choose a d-vector r ∈R { 1, 0,−1 }n
2: set h := T ∗f g
3: return m+ T ∗hr mod q

Definition 3.11. Let a, b ∈ Zn be two integral vectors and A ∈ Zn×n a matrix of rank
n. We say that a is congruent b modulo A if A−1(a− b) ∈ Zn. We then write a ≡ b
(mod A).

The following algorithm reduces a vector modulo a lower triangular matrix A:

Algorithm 8 Matrix-Reduction

Input: A lower triangular matrix A = (aij) ∈ Zn×n of rank n and b ∈ Zn.
Output: A vector b̃ ∈ Zn such that 0 ≤ b̃i < aii for all i and b ≡ b̃ (mod A).

1: for i = 1 to n do
2: set b := b− baii/bi c · (a1,i · · · an,i)T
3: end for
4: return b

Definition 3.12. We denote the output of Matrix-Reduction by a mod A.

Fact 3.13. For two integral d-vectors r,m ∈ { 1, 0,−1 }n,(
−r
m

)
mod

(
I 0
T ∗h qI

)
=

(
0

(m+ T ∗hr) mod q

)
.

Proof. For i ≤ n, the i-th iteration of the loop in line 1 of the Matrix-Reduction
algorithm will add ri times the i-th column of T ∗h to m. The following n steps simply
perform a reduction modulo q.

Remark 3.14. The above, together with 3.10.(iii) means that the NTRU encryption step
basically reduces

(−r
m

)
modulo the hermite normal form of the lattice basis. As mentioned

in 3.5, this seems to be a sane choice.

15

Algorithm 9 NTRU-Decryption

Input: prime n ∈ N, modulus q ∈ N, p ∈ N with p < q, weight bound d ∈ N, private
key

(
f
g

)
∈ Z2n

q and a ciphertext c ∈ Znq .

Output: plaintext m ∈ { 1, 0,−1 }n.

1: set ṽ := T ∗f c
2: for i = 1 to n do
3: set vi := arg min

πq(v)=ṽi

|v|

4: end for
5: return (v1 · · · vn) mod p

Proposition 3.15. With a parameter choice satisfying 8dp + 4p + 2 < q, the NTRU
Cryptosystem works correctly.

Proof. Assume that c is a ciphertext generated by NTRU-Encryption. Then,

T ∗f · c ≡ T ∗fm+ T ∗f T
∗
hr

3.7
= T ∗fm+ T ∗T ∗f h

r ≡ T ∗fm+ T ∗g r (mod q).

If the absolute values of all entries of the vector v := T ∗fm + T ∗g r are bounded by q/2,
the loop in steps 2 to 4 of NTRU-Decryption would reconstruct the value of v ∈ Zn
correctly. By 3.10.(ii), this would mean

v mod p = T ∗fm+ T ∗g r mod p = m.

Hence, let us inspect the vector v more closely. Its i-th entry is given by the formula

vi =

n∑
j=1

(
(T ∗f)ijmj + (T ∗g)ijrj

)
=

n∑
j=1

(
(T j−1f)imj + (T j−1g)irj

)
.

=
n∑
j=1

(fi−j+1mj + gi−j+1rj) .

We write f ′ = f−e1 as in the NTRU-Key-Generation step 1. Estimating the absolute
value of vi, the worst case would certainly be

f ′i−j+1 =

{
−p ; mj = −1
p ; mj = 1

and gi−j+1 =

{
−p ; rj = −1
p ; rj = 1

Since f = f ′ + e1, we obtain the condition

|vi| ≤ (dp+ (p+ 1) + dp) + ((d+ 1)p+ dp) = 4dp+ 2p+ 1,

which yields the condition 8dp+4p+2 < q if we want the absolute values to be bounded
by q/2.

16

3.3 LWE-Based

We present what is perhaps the most efficient lattice-based cryptosystem that admits a
theoretical proof of security. We first define the problem on whose worst-case difficulty
the system is based, the Learning With Errors problem.

Learning-With-Errors (LWE)

Parameters: Integers n,m, q ∈ Z+ and a probability distribution χ : Zq → [0, 1].
Instance: A pair (A, v) with A ∈ Zm×nq and v ∈ Zmq .

Problem Task: Decide if v ∈R Zmq was chosen uniformly at random or v = As+ e
was chosen with s ∈R Znq and e ∈χ Zmq .

This problem can be equivalently described as a bounded distance decoding problem
in q-ary lattices: Given A ∈R Zm×nq and a vector v ∈ Zmq , we need to distringuish
between the case that v is chosen uniformly from Zmq and the case in which v is chosen

by mangling each coordinate of a random point in Λq(A
T) using χm.

Remark 3.16. Throughout this section, we assume q to be odd. We also make frequent
use of the embedding of sets

Zq −→ R
x 7−→ arg min

πq(α)=x
|α|

when considering distributions on Zq. In other words, we choose [− q−1
2 , q−1

2] ∩ Z as a
system of representatives for Zq.

Definition 3.17. Recall the normal distribution fµ,σ : R→ [0, 1] defined by

fµ,σ(x) := 1√
2πσ2

· e−
(x−µ)2

2σ2 .

and the cummulative distribution function

φ(t) :=

t∫
−∞

f0,1(x) dx .

We now define distributions

gµ,σ : Z→ [0, 1] gµ,σ(n) :=

∫ n+ 1
2

n− 1
2

fµ,σ(x) dx

hqµ,σ : Zq → [0, 1] hqµ,σ(n) :=
∑
k∈Z

gµ,σ(n+ kq)

We call hqµ,σ the rounded normal distribution on Zq. We also define

Ψα := hq
0,(αq/

√
2π)
.

17

For the LWE problem, one usually chooses χ = Ψα as a parameter. The LWE is
assumed to be quite hard: there are no subexponential algorithms known that solve it
to date. Furthermore, the following Theorem was proven in [Reg05]:

Theorem 3.18. Assume access to an oracle that solves the LWE problem with a pa-
rameter choice (n,m, q, χ) such that χ = Ψα, αq >

√
n, a prime q ≤ poly(n) and

m ≤ poly(n). Then, there exists a quantum algorithm running in time poly(n) for
solving the SIVPγ and the decision variant of SVPγ for γ = Õ(n/α) in any lattice of
dimension n. �

In other words, assuming the security of lattice-based problems against quantum com-
puters, any cryptosystem based on LWE is also secure against quantum computers.
Moreover, it is very much possible that the proof for Theorem 3.18 may some day be
dequantized, i.e. ported to a classical computational model.

Algorithm 10 LWE-Key-Generation

Input: n,m, `, t, r, q ∈ Z+ and α ∈ R+.
Output: private key S ∈ Zn×`q and public key (A,P) ∈ Zm×n

q × Zm×`q

1: choose S ∈R Zn×`q , A ∈R Zm×nq , E ∈Ψα Zm×`q

2: set P := AS + E
3: return (S, (A,P))

Remark 3.19. Note now that an oracle to construct the private key only from (A,P)
would imply an efficient algorithm to solve LWE: Given an instance (A, v), we under-
stand v ∈ Zm×1

q as a matrix and apply our oracle to construct a “private key” s ∈ Zn×1
q .

If this succeeds, we know that e ∈Ψα Zm×1
q such that v = As + e. Otherwise, v was

chosen uniformly at random. We will discuss this in further detail in 3.3.3.

Definition 3.20. For integers q, t ∈ Z+, we define a function ρqt : Zt → Zq by

ρqt (n) :=
[nq
t

]
.

We also write ρqt instead of (ρqt)
` when we apply this function to vectors in Z`t.

Algorithm 11 LWE-Encryption

Input: n,m, `, t, r, q ∈ Z+, α ∈ R+, public key (A,P) ∈ Zm×n
q × Zm×`q , message v ∈ Z`t.

Output: ciphertext (u, c) ∈ Znq × Z`q.
1: choose a ∈R [−r, r]m ∩ Zm
2: set u := ATa
3: set c := P Ta+ ρqt (v)
4: return (u, c)

18

Algorithm 12 LWE-Decryption

Input: ciphertext (u, c) ∈ Znq × Z`q, private key S ∈ Zn×`q .

Output: v ∈ Z`t.
1: return ρtq(c− STu)

We now proceed to discuss the choice of parameters for the LWE cryptosystem under
the aspects of efficiency, possibility of decryption errors and security.

3.3.1 Efficiency

It is obvious that the algorithms 10, 11 and 12 can be implemented efficiently since they
only involve matrix operations modulo certain integers. Due to this, the algorithms are
also heavily parallelizable. It seems natural to choose t = 2k for k equaling the size of a
computer register.

3.3.2 Decryption Errors

Let b := ETa and assume |bi| < q
2t −

1
2 . We also set w := ρqt (v), so we know∣∣∣qvi

t
− wi

∣∣∣ ≤ 1

2
⇔
∣∣∣∣vi − twi

q

∣∣∣∣ ≤ t

2q

We now get

ρtq(bi + ρqt (vi)) =

[
t · (bi + wi)

q

]
.

Therefore, we can calculate the estimate∣∣∣∣vi − t · (bi + wi)

q

∣∣∣∣ =

∣∣∣∣vi − tw

q

∣∣∣∣+

∣∣∣∣ tbiq
∣∣∣∣ < t

2q
+

(
1

2
− t

2q

)
=

1

2
. (3.3)

Thus, in this case,

ρtq(c− STu) = ρtq(P
Ta+ ρqt (v)− STATa)

= ρtq((AS + E)T · a+ ρqt (v)− STATa)

= ρtq(E
Ta+ ρqt (v))

(3.3)
= v.

Since q is odd, if we additionally assume t to be even (in agreement with the foregone
considerations), we can conclude that

|bi| <
q

2t
− 1

2
⇔ t|bi| <

q − t
2
⇔ t|bi| <

q

2
⇔ |bi| <

q

2t
.

In other words, under this assumption,

Pr
[
ρtq(c− STu) = v

]
≥ Pr

[
∀i : |bi| <

q

2t

]
. (3.4)

19

Now we analyze the behaviour of b = ETa. Since each coordinate of a is uniformly
chosen from [−r, r] ∩ Z, we know that the variance of each coordinate is equal to

Var(ai) =
1

2r + 1
·
∑
k=−r

k2 =
1

2r + 1
· r · (r + 1) · (2r + 1)

6
=
r(r + 1)

3
.

We denote byX the random variable measuring bi and by Z := X−µ(X)
σ(X) its normalization,

such that Pr [z1 ≤ Z ≤ z2] = φ(z2)− φ(z1). Thus, we can calculate

σ(X)2 = Var (bi) = Var
(∑m

j=1
Ejiaj

)
=
∑m

j=1
Var(Eji) ·Var(aj) = m · α

2q2

2π
· r(r + 1)

3

and deduce an upper bound for the decryption error probability per letter:

Pr
[
|X| ≥ q

2t

]
= Pr

[
Z ≥ q

2tσ(X)

]
+ Pr

[
Z ≤ −q

2tσ(X)

]
= 1− φ

(
q

2tσ(X)

)
+ φ

(
−q

2tσ(X)

)
= 2− 2 · φ

(
q

2t · σ(X)

)
= 2 ·

(
1− φ

(
1

2tα
·

√
6π

r · (r + 1) ·m

))
. (3.5)

Plugging this into (3.4), we obtain

Pr
[
ρtq(c− STu) 6= v

]
< Pr

[
∀i : |bi| ≥

q

2t

]
= 1−

(
1− Pr

[
∃i : |bi| ≥

q

2t

])`
It is now a matter of mere arithmetics to adjust parameters accordingly in order to
obtain low error margins. We mention that one can always deploy error-correcting codes
to the plaintext in order to reduce the probability of decoding errors to arbitrary small
values.

3.3.3 Security

To meet the requirements of Theorem 3.18, we will choose q to be prime and αq >
√
n.

This leaves us with a choice for m and α where we will attempt to choose α as large
as possible since it leads to harder lattice instances. Under these conditions, we may
assume public keys to be completely indistinguishable from pairs (A,P) chosen uniformly
at random.

Althought these theoretical results stand, we would also like to choose parameters in
such a way that the best algorithms to attack LWE fail to achieve acceptable running
times. Hence, we first describe such an attack. Assume that (A, v) is an LWE-instance.

20

• Choose a short vector w ∈ Λq(A
T)∗.

• Calculate λ := 〈w, v〉.

• If λ is close to an integer, we guess that v = As+ e for some e ∈Ψα Zmq .

This routine makes use of the fact that

〈As+ e, w〉 = 〈As, w〉︸ ︷︷ ︸
∈Z

+ 〈e, w〉

and relies on 〈e, w〉 being very small. Fixing any vector w and for e ∈Ψα Zmq ,

Var (〈e, w〉) = Var
(∑m

i=1
eiwi

)
=

m∑
i=1

w2
i Var(ei) = ‖a‖2 · α

2q2

2π

yields a standard deviation of ‖w‖· αq√
2π

for this value. Since we want the above algorithm

to fail, we choose
αq√
2π
� 1

‖w‖
. (3.6)

The estimate (2.1) applied to Λq(A
T)∗ = q−1Λ⊥q (AT) yields

‖w‖ ≈ q−1 ·min
(
q, 2
√

4n log(q) log(δ)
)
.

If right and left hand side of (3.6) differ by a factor of 1.5, this brings the distribution
of λ mod Z into negligible statistical distance from the uniform distribution. Hence, we
pick

α ≥ 1.5 ·
√

2πmax
(
q−1, 2−2

√
n log(q) log(δ)

)
. (3.7)

For a pair (A,P) ∈R Zm×nq ×Zm×`q chosen uniformly at random and used as a public key
for LWE-Encryption, we would like the ciphertext to be virtually indistinguishable
from a uniformly chosen vector. This would establish the systems invulnerability against
chosen plaintext attacks.

Theorem 3.21. Let r < q be integers, M ∈R Zn×mq and a ∈R [−r, r]m ∩Zmq . Then, the
statistical distance between the distribution of Ma and the uniform distribution on Znq is
bounded by

βn,m(q, r) :=

√
(2r + 1)m

qn
.

Proof. This can be proven by an argument similar to the one in [Reg05, PVW08].

Choosing M =
(
AT

PT

)
, the above tells us that we should choose parameters in such a

way that βn+`,m(q, r) is negligible, say 2−100.

21

3.3.4 Choice of Parameters

In this summary, we present some concrete choices of parameters, satisfying our afore-
mentioned requirements. Thus, we expect them to deliver high levels of both security
and efficiency. Equation (3.6) motivates the following choice:

m :=
(n+ `) log(q)

for “�”︷ ︸︸ ︷
+200

log(2r + 1)

Using an approximation parameter of δ = 1.01 corresponds to the most exact algorithm
known, so the estimate (3.7) justifies a choice of

α := 4 ·max
{
q−1, 2−2

√
n log(q) log(1.01)

}
.

Thus, we are left with the parameters n, `, q, r and t. To obtain a balance between
encryption blowup and public key size, we choose n = l. We now try to minimize q
while maximizing r and t and maintaining a tolerable probability of decryption errors.
We give such parameter configurations below.

Private key size: sprv := n` log(q)

Public key size: spub := m(n+ `) log(q)

Message size: sm := ` log(t)

Ciphertext size: sc := (n+ `) log(q)

Encryption blowup factor: sc/sm =
(
1 + n

`

)
logt(q)

Error probability per letter: Equation (3.5) yields

ε := 2 ·

(
1− φ

(
1

2tα
·

√
6π

r · (r + 1) ·m

))
.

Lattice of dimension in attack: The value (2.1) was experimentally obtained in in-
stances where the lattice had dimension

d :=
√
n log(q)/log(δ) .

n ` m q r t α spub sc/sm ε d

136 136 2008 2003 1 2 0.0065000 6 · 106 21.9 0.84% 322

166 166 1319 4093 4 2 0.0024000 5.25 · 106 24.0 0.54% 372

192 192 1500 8191 5 4 0.0009959 7.5 · 106 13.0 1.02% 417

214 214 1333 16381 12 4 0.0004500 8 · 106 14.0 0.82% 457

233 233 1042 32749 59 2 0.0002170 7.3 · 106 30.0 0.92% 493

233 233 4536 32749 1 40 0.0002170 31.7 · 106 5.6 0.86% 493

22

References

[LLL82] A.K. Lenstra, H.W. Lenstra, and L. Lovász, Factoring polynomials with rational
coefficients, Math. Ann. 261 (1982), 515-534.

[Kan83] Ravi Kannan, improved algorithms for integer programming and related lattice
problems, In Proc. 15th ACM Symp. on Theory of Computing (STOC) (1983), 193-
206.

[Bab86] László Babai, On Lovász lattice reduction and the nearest lattice point problem,
Combinatorica 6 (1986), 1-13.

[Coh93] H. Cohen, A Course in Computational Algebraic Number Theory, edition 3,
Springer 1993.

[SL96] Arne Storjohann and George Labahn, Asymptotically Fast Computation of Her-
mite Normal Forms of Integer Matrices, Proc. Internat. Symp. on Symbolic and Al-
gebraic Computation: ISSAC (1996), ACM Press, 259-266.

[Ajt98] M. Ajtai, The shortest vector problem in L2 is NP-hard for randomized reduc-
tions, Proc. of 30th STOC. ACM (1998), 10-19.

[Lor03] Falko Lorenz, Lineaere Algebra 1, edition 3, Spektrum.

[For04] Otto Forster, Analysis 1, edition 7, Friedr. Vieweg & Sohn.

[Koe04] Konrad Königsberger, Analysis 2, edition 5, Springer.

[Sto04] J.Stoer Numerische Mathematik 1, edition 9, Springer 2004

[Reg05] O.Regev, On lattices, learning with errors, random linear codes, and cryptogra-
phy, Proc. 37th ACM Symp. on Theory of Computing (STOC), 84-93, 2005.

[GN08] N.Gama and P.Q.Nguyen, Predicting lattic reduction, Advances in Cryptology,
Proc. Eurocrypt ’08, Lecture Notes in Computer Science, Springer 2008

[PVW08] C. Peikert and V. Vaikuntanathan and B. Waters, A framework for efficient
and composable oblivious transfer, Advances in Cryptology, LNCS, Springer 2008

[MR09] D.J. Bernstein, J. Buchmann and E. Dahmen, Post Quantum Cryptography,
chapter Lattice-based Cryptography by Daniele Micciancio and Oded Regev, 147-191,
Springer 2009.

23

	Basic Definitions
	General Lattices
	q-ary Lattices
	Lattice Problems

	Finding Short Vectors
	A Length Estimate
	Lattice Reduction Methods
	Combinatorial Methods

	Encryption Schemes
	GGH/HNF
	NTRU
	LWE-Based

