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Abstract

A sheaf (on a topological space) encompasses data which is attached to
the open sets of some space. Well-known examples include the sheaves
of continuous maps from one space to another or the structure sheaf of an
affine scheme. We give a self-contained introduction to the required results
of category theory before we introduce the notion of a sheaf taking values
in any category. The main result states that under certain circumstances,
every presheaf has a sheaf associated to it. These results are directly based
on the original works of Gray (see [Gr65]).

You should note that even of this very abstract setting, there have been
significant generalizations – if you are interested, [KaSch06] is a very thor-
ough textbook. Most of the proofs of the category-theoretical results are
taken from [Brc94], which is also very recommendable for further reading.
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1 Categories

Definition 1.1. A category C consist of the following data:

• A class Ob(C), the objects of C.

• A set C(X, Y) for all X, Y ∈ Ob(C), the C-morphisms from X to Y.

• For all X, Y, Z ∈ Ob(C) a map

C(X, Y)× C(Y, Z) −→ C(X, Z) , ( f , g) 7−→ g ◦ f

which we call the composition in C.

such that the following holds:

• The composition in C is associative: ( f ◦ g) ◦ h = f ◦ (g ◦ h).

• For all X ∈ Ob(C) there exists idX ∈ C(X, X) with the property that for
all f ∈ C(X, Y) and g ∈ C(Z, X): f ◦ idX = f and idX ◦ g = g.

A category is small when Ob(C) is a set. For our purposes, a category is called
concrete if its objects are sets, morphisms are maps between them and the com-
position of morphisms is precisely the composition of these maps.

Notation. We require some common terminology for dealing with categories:

• We reserve the right to write X ∈ C instead of X ∈ Ob(C).

• The notation f : X → Y means f ∈ C(X, Y).

Definition 1.2. Let C be a category and f : X → Y. Then we call f

1. an epimorphism if for all h1, h2 : Y → Z, the equality h1 ◦ f = h2 ◦ f
already implies h1 = h2.

2. a monomorphism if for all g1, g2 : Z → X, the equality f ◦ g1 = f ◦ g2

already implies g1 = g2.

3. an isomorphism if there exists a morphism f−1 : Y → X such that f ◦
f−1 = idY and f−1 ◦ f = idX . We call f−1 the inverse of f .

Remark. It is easy to see that if an inverse exists, it is unique: Assuming that g
and h are both inverse to f yields h = h ◦ f ◦ g = g.

Definition 1.3. We say that two objects X, Y ∈ C are isomorphic if there exists
an isomorphism X → Y. We denote this by X ∼= Y.
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Notation. We write

1. f : X ↪→ Y if f is a monomorphism

2. f : X � Y if f is an epimorphism

3. f : X ∼−→ Y if f is an isomorphism.

We also say that a morphism is epic or monic when we want to say that it is an
epimorphism or monomorphism, respectively. We sometiems say that epimor-
phisms (resp. monomorphisms) can be right-cancelled (resp. left-cancelled),
which is just another way to describe their defining properties.

Definition 1.4. Let C and D be categories. A functor F from C to D consists of
the following data:

• For every X ∈ Ob(C), an object F(X) ∈ Ob(D).

• For every pair of objects X, Y ∈ Ob(C), a map of sets

F = FX,Y : C(X, Y) −→ D(F(X), F(Y)).

such that F(idX) = idF(X) and F(g ◦ f ) = F(g) ◦ F( f ). The latter (compatibility
with composition) is also being referred to as functoriality. We write functors
as F : C → D.

The composition of two functors F : C → D and G : D → E is defined to
be the functor G ◦ F which is defined by (G ◦ F)(X) = G(F(X)) on objects and
the composition G ◦ F (as maps of sets) on morphisms. It is obvious that this
defines a functor C → E .

Remark. Beware: Categories and functors together do not form a category, as
hinted at before. However, one can consider the category Cat of small cate-
gories with funtors as morphisms.

Definition 1.5. Let F and G be two functors C → D. A natural transformation
ϕ : F → G is a class { ϕX : F(X)→ G(X) | X ∈ Ob(C) } of morphisms such
that

F(X)

F( f )
��

	

ϕX
// G(X)

G( f )
��

F(Y)
ϕY
// G(Y)

we have G( f ) ◦ ϕX = ϕY ◦ F( f ) for all morphisms f : X → Y in C. This
property is also referred to as naturality.

If the ϕX are D–isomorphisms for all X ∈ Ob(C), we say that ϕ is a natural
isomorphism (or natural equivalence). We then sometimes write F ∼=ϕ G. We
define Nat(F, G) to be the class of all natural transformations F → G.
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Definition 1.6. Let C be a small category and D a category. We denote by
Fun(C,D) the functor category where

• Objects are functors C → D.

• Morphisms from F to G are the natural transformations Nat(F, G).

• Composition of natural transformations ϕ : F → G and ψ : G → H is
defined by (ψ ◦ ϕ)X := ψX ◦ ϕX for every X ∈ Ob(C).

Remark. Note that C has to be small for this definition to make sense; other-
wise, the class of natural transformations from one functor to another is not
necessarily a set.

Fact 1.7. The natural isomorphisms are the isomorphisms in Fun(C,D).

Proof. Simply note that ϕ : F → G is a natural transformation with inverse ψ

in Fun(C,D) if and only if ψX ◦ ϕX = idF(X) for all X.

2 Limits

Definition 2.1. Let I be a small category and F : I → C a functor. We say that
(X, ϕ) is a cone over F when { ϕI : X → F(I) | I ∈ I } is a family of morphisms
such that for all I–morphisms ι : I → J, the equality F(ι) ◦ ϕI = ϕJ holds. We
say that (L, λ) is a limit of F if any other cone (X, ϕ) factors uniquely through
L in the sense that

X

ϕI

��

ϕJ

��

∃!µ
��

L
λI

}}

λJ

!!

F(I)
F(ι)

// F(J)

We often write lim(F) := L and λF instead of λ to denote the dependence on
F. The dual notion is that of a cocone and a colimit:

Y

C

∃!ν

OO

F(I)

γI
==

ψI

88

F(ι)
// F(J)

γJ
aa

ψJ

ff

4



Again, we write colim(F) := C and γF instead of γ sometimes.

Example 2.2. Pullbacks are limits of functors from the path category of

•

��

• // •

whereas equalizers are limits of functors from the path category of

• //
// •

Also, products indexed by some set I are limits of functors from the discrete
category over I.

Lemma 2.3. Let F : I → C be a functor.

• If (L, λ) is the limit of F, then any two morphisms f , g : X → L are equal⇔
λI ◦ f = λI ◦ g for all I ∈ I .

• If (C, γ) is the colimit of F, then any two morphisms f , g : C → Y are equal⇔
f ◦ γI = g ◦ γI for all I ∈ I .

Proof. We prove only the first statement since the second follows dually (and
equally trivial): Both f and g are factorizations of the cone (X, (λI ◦ f )).

Definition 2.4. We say that a category C has (co)limits of type I if every func-
tor F : I → C has a (co)limit. A category is said to be (co)complete if it has
limits of type I for any small category I .

Proposition 2.5. Let I and C be small categories and D any category. Let F : I →
Fun(C,D). We denote by F(−)(X) : I → D the functor defined by

I � //

f

��

F(I)(X)

F( f )X

��

J � // F(J)(X)

�
//

If F(−)(X) has a limit for all X ∈ Ob(C), then F has a limit (L, (λI)) such that
(L(X), (λX

I )) is a limit of F(−)(X).

Proof. In the following, let always f : X → Y be a C–morphism and ι : I → J a
I–morphism. Let (L(X), λX) denote the limit of F(−)(X) where

λX
I : L(X)→ F(I)(X) such that λX

J = F(ι)X ◦ λX
I . (1)
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The naturality of F(ι)

F(I)(X)

F(I)( f )
��

F(ι)X
// F(J)(X)

F(J)( f )
��

F(I)(Y)
F(ι)Y

// F(J)(Y)

	

implies that the maps F(I)( f ) ◦ λX
I satisfy

F(ι)Y ◦ F(I)( f ) ◦ λX
I = F(J)( f ) ◦ F(ι)X ◦ λX

I = F(J)( f ) ◦ λX
J

and therefore constitute a cone over F(−)(Y). Consequently,

L(X)

λX
I

~~

λX
J

  

∃!L( f )

��

F(I)(X)

F(I)( f )

��

L(Y)

λY
I

~~

λY
J

  

F(J)(X)

F(J)( f )

��

F(I)(Y)
F(ι)Y

// F(J)(Y)

there exists a unique morphism L( f ) : L(X)→ L(Y) with the property that

λY
I ◦ L( f ) = F(I)( f ) ◦ λX

I . (2)

We now claim that L is functorial. Indeed, assume that g : Y → Z is another
C–morphism, then we have

λZ
I ◦ L(g ◦ f ) = F(I)(g ◦ f ) ◦ λX

I

= F(I)(g) ◦ F(I)( f ) ◦ λX
I

= F(I)(g) ◦ λY
I ◦ L( f )

= λZ
I ◦ L(g) ◦ L( f )

and by the uniqueness of (2), this asserts functoriality. We also observe that
the equality (2) means that λI : L → F(I) is a natural transformation for every
I ∈ Ob(I) (or, look at the parallelograms in the diagram). By (1), the pair
(L, (λI)) constitutes a cone over F.

To verify that it is a limit of F, assume that (K, (κI)) is another cone over F.
Since the κI also satisfiy

∀X ∈ Ob(C) : κX
J = F(ι)X ◦ κX

I , (3)
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we get a unique morphism µX : K(X)→ L(X)

K(X)

κX
I





κX
J

��

∃!µX

��

L(X)

λX
I

~~

λX
J

  

F(I)(X)
F(ι)X

// F(J)(X)

with the property that κX
I = λX

I ◦ µX for all I ∈ Ob(I). Also,

λY
I ◦ L( f ) ◦ µX (2)

= F(I)( f ) ◦ λX
I ◦ µX = F(I)( f ) ◦ κX

(3)
= κY

I ◦ K( f ) = λY
I ◦ µY ◦ K( f )

so L( f ) ◦ µX = µY ◦ K( f ) by 2.3. This means that µ : K → L is the unique
natural transformation with κI = λI ◦ µ – and hence, we are done.

Corollary 2.6. If C is (co-)complete, then so is Fun(I , C).

Definition 2.7. A directed set (I,≤) is a set I with a reflexive, transitive relation
“≤” with the additional property that every pair of elements i, j ∈ I has an
upper bound, i.e. an element k ∈ I such that i ≤ k and j ≤ k. A small category
I with Ob(I) = I and

I(i, j) =

{
{ i→ j } ; i ≤ j

∅ ; otherwise

for some directed set (I,≤) is then called a directed category.

Let I be a directed category. A functor F : I → C is called a directed functor. It
can be represented as a family of objects Xi = F(i) and morphisms fij = F(i→
j). In this case, we say that (Xi, fij) is a directed diagram in C. A colimit of
type I is called a direct limit. We then write

lim−→Xi := colim(F)

Dually, a functor G : Iop → C is given by a family of objects Yi = G(i) and
morphisms gij = F(i ← j). We say that (Yi, gij) is an inverse diagram in C. A
limit of type Iop is called an inverse limit and we write

lim←−Yi := lim(F)
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Fact 2.8. Inside a category C, assume that

P
f ′
//

g′

��

X

g
��

Y
f
// S

×

is a pullback diagram. If g is a monomorphism (resp. isomorphism), then so is g′. In
other words, any pullback of a monomorphism (resp. isomoprhims) is monic (resp. an
isomorphism).

Proof. Assume that g is monic and let u, v : Q → P be two morphisms such
that g′ ◦ u = g′ ◦ v. We define g′′ := g′ ◦ u and f ′′ := f ′ ◦ u. Thus,

f ◦ g′′ = f ◦ g′ ◦ u = g ◦ f ′ ◦ u = g ◦ f ′′

means that (Q, f ′′, g′′) is a cone. Therefore, u is the unique morphism that
makes the following diagram commute:

Q
u

��

f ′′

��

g′′

  

P
f ′
//

g′

��

X

g
��

Y
f
// S

On the other hand, we also have g′ ◦ v = g′ ◦ u = g′′. From

g ◦ f ′ ◦ v = f ◦ g′ ◦ v = f ◦ g′ ◦ u = f ◦ g′′ = g ◦ f ′′

we can cancel g (it is monic) to obtain f ′ ◦ v = f ′′ = f ′ ◦ u – and by uniqueness
of u, this implies u = v.

Let us assume now that g is an isomorphism. It is then easy to see that
P := Y, f ′ := g−1 ◦ f and g′ := idY is a pullback, and any two pullbacks differ
by unique isomorphism (which will then be g′).

Fact/Definition 2.9. The kernel pair of a C–morphism f : X → Y is a triple
(K, α, β) with

K α
//

β

��

X

f
��

X
f
// Y

×

if the above pullback diagram exists.
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Fact 2.10. For f : X → Y, the following conditions are equivalent:

1. f is a monomorphism.

2. The kernel pair of f exists and is given by (X, idX , idX).

3. The kernel pair (K, α, β) of f exists and α = β.

Proof. For the implication (1)⇒ (2), it suffices to verify the universal property
of the cone (X, idX , idX): Given two morphisms u, v : Z → X with f ◦ u = f ◦ v,
since f is monic, the unique factorization is given by u = v. The implication
(2)⇒ (3) is obvious. For (3)⇒ (1), let u, v : Z → X be such that f ◦ u = f ◦ v.
Then, there exists a unique h : Z → K such that u = α ◦ h = β ◦ h = v.

3 Intersections and Generators

Definition 3.1. Let C be a category and X ∈ Ob(C) an object. On the (possibly
proper) class { (U, u) | u : U ↪→ X }, we define a binary relation by

(U, u) ≤ (V, v) :⇔ u factors through v⇔ ∃ν : U → V : u = v ◦ ν

It is easy to see that this is a partial order. We continue to define an equivalence
relation

(U, u) ∼ (V, v) :⇔ u ≤ v and v ≤ u

The equivalence classes with respect to ∼ are called the subobjects of X, de-
noted by Sub(X).

Fact 3.2. Let X be an object and (U, u) ∼ (V, v) two representatives of the same
subobject of X. Then, U and V are isomorphic via the factorization of u through v (and
v through u).

Proof. By definition, v factors through u via some ν : V ↪→ U which has to be
monic since both u and v are monic. Equivalently, u factors through v via some
µ : U ↪→ V, so

U _
µ

��

o
u

//

	

X

V
�

ν

__

�
v

??

Now u ◦ ν ◦ µ = v ◦ µ = u = u ◦ idU and u can be left-cancelled, so we have
ν ◦ µ = idU and symmetrically, we get µ ◦ ν = idV .
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Notation 3.3. For ease of notation, we mean by U ∈ Sub(X) the equivalence
class of a pair denoted by (U, ιU). This notation is slightly abusive because
there might be more than one monomorphism U ↪→ X. However, we shall
never abuse it to imply the contrary.

Definition 3.4. A category C is called well-powered when Sub(X) is a set for
any object X ∈ Ob(C).

Example 3.5. Clearly, the category Sets is well-powered: The subobjects of any
set are in bijection with its subsets. Similarly, the categories Grp and Ab are
well-powered.

Definition 3.6. Let X be an object of some category C. The intersection of any
family of subobjects of U ⊆ Sub(X) is defined to be its infimum in Sub(X), if it
exists. We denote this by ⋂

U := inf
Sub(X)

(U).

Furthermore, the union of U is defined to be its supremum⋃
U := sup

Sub(X)

(U).

In the case U = {U, V }, we write U ∩ V :=
⋂
U as well as U ∪ V :=

⋃
U and

similarly for all finite sets U.

Fact 3.7. Let X be an object of a category C such that Sub(X) is a set. Then, the
intersection of any family of subobjects of X exists if and only if the union of any
family of subobjects of X exists.

Proof. This follows because

inf(U) = sup {V | ∀U ∈ U : V ≤ U }
sup(U) = inf {V | ∀U ∈ U : V ≥ U }

holds in any partially ordered set.

Proposition 3.8. Let U and V be two subobjects of X. If the pullback of the diagram
U o ιU // X V/ιVoo exists, it is the intersection U ∩V.

Proof. We consider the pullback diagram

W
O

λV
��

o
λU
// U
O

ιU
��

V o
ιV
// X

×
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where all morphisms are monic by 2.8. Now this means that

ιU ◦ λU = ιV ◦ λV =: ιW

define the same monomorphism and W is a subobject of X which is smaller
than both U and V. On the other hand, given any subobject W ′ which is smaller
than U and V, we obtain a cone that factors through W – so indeed, W =

U ∩V.

Proposition 3.9. In a complete and well-powered category C, the intersection of any
family of subobjects of some object X ∈ Ob(C) always exists.

Proof. Let S be a complete system of representatives for a subclass of Sub(X).
Let I be the subcategory of C with Ob(I) = {U | (U, ιU) ∈ S } and

I(U, V) :=


{ ιU } ; V = X
{ idU } ; V = U

∅ ; otherwise

Then, we can consider the limit (L, γ) of the inclusion functor I → C. We claim
that γX : L → X is a monomorphism. Indeed, if u, v : T → L are morphisms
with γX ◦ u = γX ◦ v, then we have

ιU ◦ γU ◦ u = γX ◦ u = γX ◦ v = ιU ◦ γU ◦ v

for all U ∈ S. Now since ιU is monic for all such U, we can conclude that
γU ◦ u = γU ◦ v holds for all U ∈ S. But then, by 2.3, we know that u = v.
Therefore, (L, γX) defines a subobject of X. By construction of hte limit, γX

factors through any subobject given by U ∈ S.

Notation 3.10. The following notational concept is slightly abusive and will
only be used in this subsection. Let C be a category. If G ⊆ Ob(C) is a sub-
classes of objects, we define

C(G, X) :=
⋃

G∈G
C(G, X)

We then write f : G→ X to mean f ∈ C(G, X).

Definition 3.11. Let C be a category. A subclass G ⊆ Ob(C) of objects is called
a family of generators of C if G is a set and the following condition holds for
any two C–morphisms u, v : X → Y:

(u 6= v)⇒ (∃g : G→ X : u ◦ g 6= v ◦ g).

If G = {G} consists of a single element, we say that G is a generator of C.
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Fact 3.12. If G is a generating family for C, then a C–morphism f : X → Y is
monic if and only if the following cndition holds: For all u, v : G → X, the equality
f ◦ u = f ◦ v implies u = v.

Proof. Let x, y : T → X be two arbitrary morphisms with f ◦ x = f ◦ y. Now
if x were different from y, then there would be a g : G → T with the property
that x ◦ g 6= y ◦ g. But on the other hand, f ◦ x ◦ g = f ◦ y ◦ g means x ◦ g = y ◦ g
by assumption, which is absurd. Hence, x = y.

Example 3.13. Let us give some examples of generators.

• In Sets, a generator is given by the one-point-set {∗}.

• In the category AlgR of R–algebras, R[X] is a generator.

• In the category ModR of R–modules, R itself is a generator.

• In the category Grp, the group (Z,+) is a generator.

The above list of examples motivates the following definition:

Fact/Definition 3.14. Let C be a concrete category. A free generator in one
variable is an object G ∈ Ob(C) with an element g ∈ G and the property that

∀T ∈ Ob(C) : ∀t ∈ T : ∃! gt : G → T such that gt(g) = t.

In other words, there is a unique morphism G → T for every object T which is
defined by the image of g. We sometimes write 〈g〉 for the object G to denote
this. We claim that a free generator is a generator in the sense of 3.11.

Proof. Let u, v : X → Y be two different morphisms. Then, there exists some
x ∈ X such that v(x) 6= u(x). Let g : G → X be such that g(xi) = x for all i.
Then, v(g(x1)) 6= u(g(x1)) and therefore v ◦ g 6= u ◦ g.

Definition 3.15. A family G of objects of C is said to be a family of strong gen-
erators when the following condition holds: If ι : U ↪→ X is a monomorphism
which is not an isomorphism, there exists a g : G → X which does not factor
through ι (there exists no ḡ with g = ι ◦ ḡ). In the case G = {G}, we say that G
is a strong generator.

We note that, in general, the two notions of generator and strong generator do
not coincide. However, the following observations show that under relatively
humble conditions, they do.

Fact 3.16. If C has equalizers, then any family of strong generators is a family of
generators.
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Proof. Let G be a family of strong generators. Assume that we have two mor-
phisms u, v : X → Y with u 6= v. Then there exists some g : G → X which
does not factor through the equalizer eq(u, v) ↪→ X of u and v. Consequently,
u ◦ g 6= v ◦ g.

Fact 3.17. If every C–monomorphism is the equalizer of a pair of morphisms, then
every family of generators is a family of strong generators.

Proof. Let G be a family of generators. Let ι : U ↪→ X be a proper monomor-
phism. By assumption, there exist α, β : X → Y such that U = eq(α, β). We
know that α 6= β because otherwise, ι would be an isomorphism. Hence, there
has to be a G ∈ G and g : G → X with g ◦ α 6= g ◦ β. This means that g does
not factor through U = eq(α, β).

Remark 3.18. Note that this particularly implies that all the generators in 3.13
are strong.

Proposition 3.19. If C is a category with finite limits that has a strong family G of
generators, then C is well-powered.

Proof. Let X ∈ C be an object. Consider the set

S := ä
G∈G
C(G, C) = { (G, g) | G ∈ G, g : G → C }

Now, we associate to each U ∈ Sub(X) the subset

σU = { (G, g) | ∃h : G → U : ιU ◦ h = g } .

Assume now that V, U ∈ Sub(X) such that σU = σV . We consider the following
pullback diagram (see also 3.8):

U ∩V o
λU

//
O

λV
��

U
O

ιU
��

V o
ιV

// X

×

It is our goal to show that λU is an isomorphism - by symmetry, we can then
conclude that λV is also an isomorphism and therefore, U = V (as subobjects
of X). Consequentially, we can identify Sub(X) with a subset of the powerset
of S, which is a set.

If λU was no isomorphism, there would exist some x : G → U which does
not factor through U ∩ V by assumption on G. Since g := ιU ◦ x ∈ σU = σV ,
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there would be a y : G → V such that ιV ◦ y = g and hence, the universal
property of the pullback

G

∃!z
%%

x

$$

y

%%

U ∩V o λU //
O

λV
��

U
O

ιU
��

V o ιV // X

×

contradicts the assumption. Thus, λU is an isomorphism.

Lemma 3.20. Let C be a category with pullbacks and I a small one. Let ϕ : F → G
be a natural transformation of functors F, G ∈ Fun(I , C). Then, ϕ is monic if and
only if ϕI is monic for all I ∈ Ob(I).

Proof. If all ϕI are monic, then ϕ is monic because natural transformations are
composed component-wise. For the converse, assume that ϕ is monic. Then,
we know that the difference kernel of ϕ is given by (F, idF, idF) – recall 2.10.
By 2.5, this means that (F(I), idF(I), idF(I)) is difference kernel of ϕI and again
by 2.10, ϕI is monic.

Corollary 3.21. If a category C has finite limits and a family of strong generators,
then Fun(I , C) is well-powered for any small category I .

Proof. By 3.19, C is well-powered. If F ∈ Fun(I , C), the assignment

Sub(F) −→ ∏
I∈Ob(I)

Sub(F(I))

(G, ϕ) 7−→ (G(I), ϕI)I

is well-defined by 3.20. To see that it defines an injective map of sets (and
therefore proving the statement), let us assume that (G(I), ϕI) ∼ (H(I), ψI).
Then, we have isomorhisms µI : G(I)→ H(I) with

G(I)

µI
""

o
ϕI

//

	

F(I)

H(I)
|

ψI

<<

For any I–morphism ι : I → J, we can compute

ψJ ◦ µJ ◦ G(ι) = ϕJ ◦ G(ι) = F(ι) ◦ ϕI = F(ι) ◦ ψI ◦ µI = ψJ ◦ H(ι) ◦ µI
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by applying (in this order) the property of µ, naturality of ϕ, property of µ and
naturality of ψ. Since ψJ is monic, we can cancel it to verify that µ := (µI) is
a natural transformation with ϕ = ψ ◦ µ. Since µ is a natural isomorphism,
(G, ϕ) ∼ (H, ψ) and we are done.

4 Sheaves

Definition 4.1. Let X be any topological space. We can then consider the di-
rected category TX where

• objects are the open subsets U ⊆̊X.

• relations are given by U ≤ V :⇔ U ⊇ V.

For every subset M ⊆ X, we denote by UX(M) the full subcategory of TX

induced by all open neighbourhoods of M (e.g. all open sets U with U ⊇ M).
We often write U(M) instead of UX(M) if there is no ambiguity concerning X.
We also set UX(p) := UX({p}).

An open cover U of X is a set of open subsets of X such that
⋃U = X. An open

cover is called strong if it is closed under finite intersections – i.e. U, V ∈ U
implies that U ∩V ∈ U .

Definition 4.2. Let C be a category and X a topological space.

PreSh(X, C) := Fun(TX , C)

The category of C–presheaves on X. A presheaf F is called a sheaf if for every
strong covering V of any open subset U ⊆̊X,

F (U) = lim←−
V∈V

F (V).

This defines the full subcategory Sh(X, C) of PreSh(X, C) which we call the
category of C–sheaves on X.

Proposition 4.3. The inclusion functor Sh(X, C) ↪→ PreSh(X, C) reflects all limits.
In other words, whenever a diagram of sheaves has a limit, then this limit is a sheaf.

Proof. Let F : I → PreSh(X, C) = Fun(TX , C) be a functor which maps every
object I ∈ Ob(I) to a sheaf FI := F(I). Assume that F has a limit (L , λ). Let
V be a strong covering of some U ⊆̊X. The above then means that

λI : L → FI with F(ι) ◦ λI = λJ for all ι ∈ I(I, J). (4)
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We now need to show that (L (U), ρL
U/−) is a limit for L |V . Assume that (T, τ)

is a cone over L |V , i.e.

τW = ρL
V/W ◦ τV for all V, W ∈ V such that W ⊆ V.

Since λI is a morphism of presheaves and FI(U) = lim←−V∈V F (V) for every
I ∈ Ob(C), we obtain

T

∃!δI

��

τV

{{

τW

##

L (V) ρL
V/W

//

λI
V

��

L (W)

λI
W

��

FI(U)

ρI
U/V

||

ρI
U/W

##

FI(V)
ρI

V/W

// FI(W)

(5)

where we write ρI
V/W := ρFI

V/W . If ι : I → J is a I–morphism, we notice that for
all V ∈ V ,

ρJ
U/V ◦ F(ι)U ◦ δI = F(ι)V ◦ ρI

U/V ◦ δI

= F(ι)V ◦ λI
V ◦ τV

= λJ
V ◦ τV

= ρJ
U/V ◦ δJ

implying F(ι)U ◦ δI = δJ by 2.3. Because (L (U), λ−U) is a limit for F(−)(U) by
2.5,

T

δI





δJ

��

∃!τU

��

L (U)

λI
U

||

λ
J
U

""

FI(U)
F(ι)U

// FJ(U)

In particular, this implies that

λI
V ◦ ρL

U/V ◦ τU = ρI
U/V ◦ δI = λI

V ◦ τV
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so again by 2.3, we know that ρL
U/V ◦ τU = τV for all V ∈ V . In diagram form,

this means
T

τV





τW

��

τU

��

L (U)

ρL
U/V

||

ρL
U/W

""

L (V)
ρL

V/W

// L (W)

for V ⊆ W and V, W ∈ V . We are left to verify that τU is unique with this
property.

Now, if θ : T → L (U) is another morphism such that ρL
U/V ◦ θ = τV for all

V ∈ V , then we fix some I ∈ Ob(I) and use the equalities from (5) to calculate
that

ρI
U/V ◦ δI = λI

V ◦ τV = λI
V ◦ ρL

U/V ◦ θ = ρI
U/V ◦ λI

U ◦ θ.

for all V ∈ V . By 2.3, this means λI
U ◦ θ = δI and therefore, θ = τU since τU

was unique with precisely this property.

Proposition/Definition 4.4. Assume that C has products. For an open covering
U = {Ui | i ∈ I } of any open subset U ⊆̊X, consider the diagram

F (U)
αF
U
//∏
i∈I

F (Ui)
ω̂F
U
//

ω̆F
U

// ∏
i,j∈I

F (Uij) (6)

where the morphisms are defined as

αF
U = ∏

i∈I
ρF

U/Ui
ω̂F
U = ∏

i,j∈I
ρF

Ui/Uij
◦ πi ω̆F

U = ∏
i,j∈I

ρF
Uj/Uij

◦ πj.

It is called the sheaf sequence of F . We often write αU , αF or simply α instead
of αF

U if the sheaf and/or the covering are clear from the context. The same
holds for ω̂ and ω̆.

Now, we claim that F is a sheaf if and only if (F (U), αF
U ) is the equalizer of

ωF
U and ω̆F

U for all open coverings U of U.

Remark. Note that we always have

ω̂F
U ◦ αF

U = ∏ij ρF
Ui/Uij

◦ ρF
U/Ui

= ∏ij ρF
U/Uij

= ∏ij ρF
Uj/Uij

◦ ρF
U/Uj

= ω̆F
U ◦ αF

U .

17



by the presheaf property. It therefore suffices to check the universal property
of the equalizer if one wants to verify for a certain presheaf F that it is a sheaf.

Proof. First, we note that every open cover U = {Ui | i ∈ I } gives rise to a
strong open cover U :=

⋃
n∈N {Uı̄ | ı̄ ∈ In } Thus, if F is a sheaf and such an

open cover U is given, then

F (U) = lim←−
V∈U

F (V).

Let ϕ : T → ∏i F (Ui) be some morphism such that ω̂ ◦ ϕ = ω̆ ◦ ϕ. We
define maps ϕı̄ : T → F (Uı̄) for all Uı̄ ∈ U as follows: For i ∈ I, we have
ϕi := πi ◦ ϕ. Then, set ϕı̄ := ρUi0 /Uı̄ ◦ ϕi0 for any multiindex ı̄ = (i0, . . . , in).
We now claim that these define a cone. Hence, assume that we have another
multiindex ̄ = (j0, . . . , jm) such that Uı̄ ≤ U̄, i.e.

Ui0 ∩ . . . ∩Uin ⊆ Uj0 ∩ . . . ∩Ujm ⊆ Uj0 .

Our goal is to show that ρU̄/Uı̄ ◦ ϕ ̄ = ϕı̄. Let us first assume ̄ = (j). For
ı̄ = (i), the statement follows from our assumption on ϕ since Ui ⊆ Uj means
Ui = Uij. We use this as a base case for an induction to prove that

ρUj/Uı̄ ◦ ϕj = ρUj/Ui0 ···in
◦ ϕj

= ρUi0 ···in−1
/Ui0 ···in

◦ ρUj/Ui0 ···in−1
◦ ϕj

= ρUi0 ···in−1
/Ui0 ···in

◦ ϕi0···in−1

= ρUi0 ···in−1
/Ui0 ···in

◦ ρUi0 /Ui0 ···in−1
◦ ϕi0

= ρUi0 /Ui0 ···in
◦ ϕi0

= ϕi0···in = ϕı̄

Now we let ̄ be of arbitrary length and calculate

ρU̄/Uı̄ ◦ ϕ ̄ = ρU̄/Uı̄ ◦ ρUj0 /U̄
◦ ϕj0 = ρUj0 /Uı̄ ◦ ϕj0 = ϕı̄.

This now means that ϕ uniquely factorizes through the limit F (U) verifying
that F (U) is an equalizer for ω̂ and ω̆.

Conversely, let U = {Ui | i ∈ I } be a strong covering of U ⊆̊X. Whenever i, j ∈
I are indices, let (ij) be an index such that U(ij) = Ui ∩Uj. Now, assume that
ϕi : T → F (Ui) is a family of morphisms satisfying ϕi = ρUj/Ui

◦ ϕj whenever
Ui ⊆ Uj. We then have to show that ϕ factors through F (U). Now, U is a
covering of U – and by assumption, F (U) is the equalizer of the corresponding
ω̂ and ω̆. Let ϕ : T → ∏i F (Ui) the morphism induced by the ϕi. Then,

ω̂ ◦ ϕ = ∏i,j ρUi/Uij
◦ ϕi = ∏i,j ϕ(ij) = ∏i,j ρUj/Uij

◦ ϕj = ω̆ ◦ ϕ

means that ϕ has to factor through F (U) as required.

18



Corollary/Definition 4.5. Let C be a preadditive category with products and F

a C–presheaf on X. If U = {Ui | i ∈ I } is an open cover for U ⊆̊X, the diagram

F (U)
αF
U
//∏
i∈I

F (Ui)
ωF
U
// ∏
i,j∈I

F (Uij) (7)

with ω = ω̂ − ω̆ is called the additive sheaf sequence. By the above, F is a
sheaf if and only if (F (U), αF

U ) = ker(ωF
U ).

Example 4.6. If F is the presheaf

F (U) := { f : U → R | f continuous }

with restriction of maps, we check (7). Given an open cover U = {Ui | i ∈ I }
and morphisms fi : Ui → R with ω(( fi)i) = 0, this means that

0 = ω (( fi)i) =
(
∏ij ρUi/Uij

◦ πi − ρUj/Uij
◦ πj

)
(( fi)i)

=
(

ρUi/Uij
( fi)− ρUj/Uij

( f j)
)
=
(

fi|Uij − f j|Uij

)
or, in other words, the maps agree on all intersections. We can therefore glue
them to a continuous map f ∈ F (U) such that f |Ui = fi, so α( f ) =

(
f |Ui

)
. In

other words, the presheaf of continuous R–valued functions on X is a sheaf.
Note that if we replace “continuous” by “bounded”, this is no longer true –

the glueing of locally bounded functions must not be bounded.

Definition 4.7. Let F be a C–presheaf on X and p ∈ X. If it exists, the stalk of
F in p is defined to be the direct limit

Fp := lim−→
U∈U(p)

F (U).

For every U ∈ U(p), we denote by σF
U/p : F (U) → Fp the canonical mor-

phisms of this limit. We sometimes write σU/p when there is no ambiguity
concerning the presheaf F . If the stalk exists for all p ∈ X, we say that F has
stalks.

Fact/Definition 4.8. For any morphism ϕ : F → G of C–presheaves on X
which have a stalk at p ∈ X, the morphisms σG

U/p ◦ ϕU constitute a cocone. We
then define ϕp : Fp → Gp to be the unique morphism such that

F (U)

σF
U/p
��

ϕU
// G (U)

σG
U/p
��

Fp ϕp
// Gp
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Proof. For any V ⊆ U, we have

σG
U/p ◦ ϕU = σG

V/p ◦ ρG
U/V ◦ ϕU = σG

V/p ◦ ϕV ◦ ρF
U/V .

Exercise 4.9. If C has limits of type U(p) for some p ∈ X, check that (−)p
defines a functor (−)p : Sh(X, C) −→ C.

5 Sheafification

For the rest of this subsection, let X be a topological space and C a category. We
will therefore write PreSh instead of PreSh(X, C) and Sh instead of Sh(X, C).

Fact/Definition 5.1. Assume that C has direct limits and products. There is a
functor

(−)+ : PreSh→ Sh with F+(U) = ∏
p∈U

Fp

and restriction maps are just the projections. We call it the stalkification func-
tor. There are morphisms σF : F → F+ which are natural in F and given by
the formula

σF
U = ∏

p∈U
σF

U/p.

We call σF the stalkification morphism of F .

Proof. It is immediate that F+ is a presheaf. The fact that it is a sheaf then
follows from the universal property of the product.

If ϕ : F → G is a morphism of presheaves, the morphisms ϕp (see 4.8) give
rise to a morphism ϕ+ : F+ → G+ defined by (ϕ+)U := ∏p∈U ϕp. Compatibil-
ity with the restriction is obvious since those are just the projections, so we are
left to check functoriality. Given another morphism ψ : G → H , this follows
simply because (−)p is a functor.

The fact that σF is a morphism of presheaves again just follows from the
fact that the restriction morphisms of F+ are the canonical projections of the
products, so we are left to verify that σF is natural in F . In other words, we
need to show that

F (U)

σF

��

ϕU
// G (U)

σG

��

∏
p∈U

Fp ∏
p∈U

ϕp

// ∏
p∈U

Gp
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for all U ⊆̊X. This follows directly from 4.8:

σG ◦ ϕU = ∏
p∈U

σG
U/p ◦ ϕU = ∏

p∈U
ϕp ◦ σF

U/p = ∏
p∈U

ϕp ◦ σF

Definition 5.2. Let C be a category with direct limits. An object S ∈ Ob(C) is
called small if the following condition holds for all directed diagrams (Xi, ξij)

in C with colimit (C, γ):
Whenever there are two morphisms fi : S → Xi and f j : S → Xj with the

property that γi ◦ fi = γj ◦ f j, then there is a k ≥ i, j such that ξik ◦ fi = ξ jk ◦ f j.

S
fi

~~

f j

  

Xi
γi
//

∃ ξik ��

C Xj
γj
oo

∃ ξ jk��

Xk

If C has a family of strong generators which consists of small objects, we say
that C has enough small objects.

Definition 5.3. Let F be a presheaf. The sheafification of F , if it exists, is the
reflection (F+, θF ) of F along the inclusion functor Sh ↪→ PreSh.

Remark. In other words, the sheafification of F consists of a sheaf F+ and a
morphism θF : F → F+ of presheaves such that, for any sheaf G and any
morphism ϕ : F → G ,

F

θF
!!

ϕ
// G

F+

∃!ψ

==

there exists a unique ψ : F+ → G with ϕ = ψ ◦ θF = ϕ.

Proposition 5.4. If C has products, direct limits and enough small objects, the stalki-
fication morphism of any sheaf is monic.

Proof. Let F be a sheaf and σ : F → F+ the stalkification morphism. We
omit all superscripts for the sake of readability. By 3.20, we have to show that
σU : F (U) → F+(U) is a monomorphism for all open subsets U ⊆̊X. Hence,
assume that u, v : S→ F (U) are morphisms with σU ◦ u = σU ◦ v. By 3.12 and
our assumptions on C, we may assume S to be a small, strong generator. Let
p ∈ U be any point, then 5.1 tells us that σU/p ◦ u = σU/p ◦ v.
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Since S is small, this means that there exists some Up ∈ UU(p) with the
property that ρU/Up ◦ u = ρU/Up ◦ v. Now U :=

{
Up
∣∣ p ∈ U

}
is an open

cover. Recalling (6), we get that

αU ◦ u = ∏
p∈U

ρU/Up ◦ u = ∏
p∈U

ρU/Up ◦ v = αU ◦ v

and because αU is monic for every open cover U , we can conclude u = v.

Theorem 5.5 (Existence of the Sheafification). Let C be a complete category with
direct limits and enough small objects. Then, the sheafification F+ of any C–presheaf
F on X exists and

F

θF
!!

σF
// F+

F+

	
| υF

<<

In other words, the unique υF making the above commutative is monic.

Proof. Let F be a presheaf and let σF : F → F+ be its stalkification mor-
phism. By 3.21, we know that PreSh is well-powered. By 2.6, it is also com-
plete. Thus by 3.9, the intersection of any family of subobjects of F+ exists.
Let

U :=
{
(G , γ) ∈ Sub(F+)

∣∣∣ G ∈ Sh, ∃ θ : F → G : γ ◦ θ = σF
}

be the family of subsheaves of F+ through which the stalkification factors. By
5.1, this set is never empty. We can therefore pick (F+, υF ) :=

⋂
U and define

θF to be the morphism such that υF ◦ θF = σF (which exists by definition
of U). Now, let us check that this defines a sheafification of F . Hence, assume
that G be a sheaf and ϕ : F → G a morphism of presheaves. Consider

F

∃!µ

$$

ϕ

$$

σF

%%

P

α

��

o
β

// F+

ϕ+

��

G o
σG

// G+

×

Since pullbacks are limits, P is a sheaf by 4.3. Note that β is monic by 2.8
because σG is the stalkfication morphism of G , which is monic by 5.4. In other
words, (P , β) ∈ Sub(F+). The fact that σG ◦ ϕ = ϕ+ ◦ σF is just the naturality
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of σ by 5.1 and the thereby induced morphism µ proves that (P , β) ∈ U. By
minimality,

F+

∃κ

!!

o
υF

// F+

ϕ+

!!

P
~

β

>>

	

	

a

α

!!

G+×

F

θF

OO

µ
==

ϕ
// G

σG

==

The left triangle also commutes since β is monic and therefore,

β ◦ κ ◦ θF = υF ◦ θF = σF = β ◦ µ =⇒ κ ◦ θF = µ.

We define ψ := α ◦ κ and get that

ψ ◦ θF = α ◦ κ ◦ θF = α ◦ µ = ϕ.

We are left to show that ψ is unique with this property. If ψ′ : F+ → G is
a morphism with ψ′ ◦ θF = ϕ, let (E , ι) be the equalizer of ψ and ψ′. Again
by 4.3, E is a sheaf and since ψ ◦ θF = ψ′ ◦ θF , there is a unique morphism
γ : F → E such that ι ◦ γ = θF .

E o
ι
// F+

ψ
//

ψ′
// G

F

∃!γ

aa

θF

OO

By minimality of F+, we know that ι has to be an isomorphism. This means
ψ = ψ′.

Definition 5.6. A category C is called fertile if it is complete, has direct limits
and enough small objects.

Corollary 5.7. Let C be a fertile category. Then there is a left adjoint

(−)+ a i : Sh � PreSh

In particular,

• The categories PreSh and Sh are complete.

• If C has comlimits of type I , then so do PreSh and Sh. The colimit of a diagram
D in Sh is the sheafification of the colimit of D in PreSh.
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Proposition 5.8. The categories Sets, Grp, AlgR and ModR are fertile.

Proof. Note that all these categories are complete and cocomplete, so we are
left to verify that they have enough small objects. Given a directed diagram
(Xi, ξij) indexed by (I,≤), we consider the set

X := { (x, i) | i ∈ I, x ∈ Xi }
/
∼

where the equivalence relation ∼ is defined by

(x, i) ∼ (y, j) :⇔ ∃k ≥ i, j : ξik(x) = ξ jk(y). (8)

Let us denote the equivalence class of (x, i) by [x, i]. We claim that X is an object
of our category. For Sets, this is obvious. Assume that we require a group law
(denoted by +). We define it by choosing an index (ij) ∈ I such that (ij) ≥ i
and (ij) ≥ j. We then set

[x, i] + [y, j] := [ξi,(ij)(x) + ξ j,(ij)(y), (ij)].

This is well-defined: If [y, j] = [z, k], we pick some m ∈ I with the property that
m ≥ ((ij)(ik)) and ξ jm(y) = ξkm(z). Then,

[x, i] + [y, j] = [ξi,(ij)(x) + ξ j,(ij)(y), (ij)]

= [ξ(ij),m(ξi,(ij)(x) + ξ j,(ij)(y)), m]

= [ξim(x) + ξ jm(y), m]

= [ξim(x) + ξkm(z), m]

= [ξi,(ik)(x) + ξ j,(ik)(z), (ik)]

= [x, i] + [z, k]

It inherits all properties from the group laws on the Xi by definition. In AlgR,
we also define the multiplicative group law in the above way and distributivity
follows for the same reason. In AlgR and ModR, we define a scalar multiplica-
tion by

α · [x, i] := [α · x, i],

which is well-defined for all the same reasons as before. By definition of the
algebraic structure, the maps

γi : Xi −→ X

x 7−→ [x, i]

are homomorphisms. Since γj(ξij(x)) = γi(x) is equivalent to (8), we can
conclude that (X, γ) is a direct limit for the diagram (Xi, ξij).
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Recall from 3.13 that each of the above categories has free generator 〈g〉 in
one variable. Given any two morphisms fi : 〈g〉 → Xi and f j : 〈g〉 → Xj
with the property that γi ◦ fi = γj ◦ f j, let x := fi(g) and y := f j(g). Then,
[x, i] = [y, j] means that there exists some k with ξik(x) = ξ jk(y) and thus,
ξik ◦ fi = ξ jk ◦ f j.

Corollary 5.9. Rings = AlgZ and Ab = ModZ are fertile.
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